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Abstract

All software evolves, and programming languages and programming language
tools are no exception. And just like in ordinary software construction, mod-
ular implementations can help ease the process of changing a language im-
plementation and its dependent tools. However, the syntactic and semantic
dependencies between language features make this a challenging problem. In
this paper we detail how programming languages can be implemented in a
modular fashion using the Rascal meta-programming language. Rascal
supports extensible definition of concrete syntax, abstract syntax and op-
erations on concrete and abstract syntax trees like matching, traversal and
transformation. As a result, new language features can be added without
having to change existing code. As a case study, we detail our solution of the
LDTA’11 Tool Challenge: a modular implementation of Oberon-0, a rela-
tively simple imperative programming language. The approach we sketch can
be applied equally well to the implementation of domain-specific languages.
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1. Introduction

Like all software, programming languages and programming language tools
evolve. A case in point is the regular releases of new versions of mainstream
programming languages like Java, Javascript, Python, and C#. Just like
ordinary software, the implementation of such languages needs to evolve,
to respond to new language versions, to changes in the environment, or to
changes in the user requirements. Modular implementations can help ease
the process of changing a language implementation and its dependent tools.
However, the syntactic and semantic dependencies between language features
make this a challenging problem.

An important trait of evolvable software is when its artifacts are “open
for extension, but closed for modification” [1]. This entails that a software
system can be extended with new features without having to change existing
code.

In this paper we present an extended experiment in applying the open-
closed principle to the implementation of a relatively simple, imperative lan-
guage of moderate size used in compiler construction courses [2]. The case
study involves implementing the concrete syntax, name analysis, type check-
ing, code generation and formatting components for different variants of the
language in a modular fashion.

The main contributions of this paper are:

• A case study of implementing Oberon-0 in Rascal, which illustrates
how to implement many aspects of a programming language in this
language workbench.

• A demonstration how to structure these implementations in a modular
and extensible fashion.

Organization. This paper is further organized as follows. First, we introduce
the Rascal language and its module system in Section 2. This provides the
necessary background to the presentation of the Oberon-0 case study in
Section 3. Based on the case study, we present results on the artifacts of the
case study in Section 4 and discuss observations and directions for future work
in Section 5. We then position Rascal in the broader context of modular
semantics, static analysis and language implementation in Section 6. The
paper is concluded in Section 7.
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2. Rascal, a DSL for meta-programming

2.1. Introduction

Rascal1 is a domain-specific language for meta-programming [3, 4] that has
the ambition to be a one-stop-shop for all aspects of language design and im-
plementation. It aims to be a platform that integrates and extends many
existing approaches for language implementation (cf. Section 6). Rascal
has been designed to deal with software languages in the broadest sense of the
word. Its application areas include not only the development of DSLs, com-
pilers and IDEs, but also reverse engineering and reengineering of (legacy)
software systems and software repository mining. Rascal features powerful
language constructs to make such meta-programming tasks more effective:

• Integrated syntax definitions: context-free grammars can be declared
as part of ordinary Rascal code; the concrete syntax trees defined by
such grammars are first-class values, and non-terminals are first-class
types.

• Built-in data types: apart from the standard data types (int, bool,
string etc.), Rascal supports sets, relations, maps, lists, algebraic data
types (ADTs), concrete syntax trees, and source locations. Every value
in Rascal can be used in pattern matching. This includes concrete
syntax trees produced by a grammar defined in Rascal.

• Constructs for analysis and transformation: sets, relations, maps and
lists can be used in comprehensions. The visit-statement allows for
strategic traversal and rewriting of abstract or concrete syntax trees.

• A rich and growing ecosystem of libraries that provide facilities for visu-
alization, statistical analysis, reading and writing existing data formats
(JSON, XML, CSV, and others) and data repositories, and analysis and
transformation of existing programming languages (Java, PHP, C#).

We have aimed to make Rascal easy to learn and debug by adhering to well-
known C/Java/C#-like syntax and familiar programming idioms (mostly
standard and explicit control-flow, functional programming, and pattern-
matching) and by providing a gradual learning path to more advanced fea-
tures.

1http://www.rascal-mpl.org.
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2.2. Rascal’s Module System and Extensibility

Modularity in programming language descriptions has a long and rich history
that we will sketch later in Section 6.

Rascal’s module system aims at providing modular and extensible def-
initions of syntax and semantics of a language of interest. It is easiest ex-
plained using an example. Consider the following module that defines the
abstract syntax of a simple expression language and an interpretation func-
tion eval:

module Exp
data Exp = lit(int n) | add(Exp l, Exp r);

int eval(lit(n)) = n;
int eval(add(l, r)) = eval(l) + eval(r);

This module employs pattern-based dispatch: function definitions can be de-
fined using signatures containing arbitrary patterns (e.g., add(l, r)) and func-
tions are called based on the pattern that they match. Formal parameters of
functions are thus generalized to arbitrary patterns, supporting a powerful
way of overloading function with additional cases.

Rascal modules such as these are lexically closed: all function references in
it are resolved within the current module or any of its imports. For instance,
the recursive call to eval for addition, only sees the two cases defined in this
module.

Consider writing another module to add expressions involving multipli-
cation:

module ExpMul
import Exp;
data Exp = mul(Exp l, Exp r);

int eval(mul(l, r)) = eval(l) ∗ eval(r);

In this module, the Exp data type is extended with a constructor for multipli-
cation expressions. Within ExpMul it is now possible to create both additive,
literal and multiplication expressions. In other words: the data type Exp in
the context of ExpMul can be used as if the alternatives of Exp are merged with
the alternatives defined here (i.e. mul).

Accordingly, the eval function is extended with the semantics of multi-
plication. However, because modules are lexically closed regarding function
names, evaluating an addition expression with a nested multiplication in the
context of this module leads to a dynamic error:
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eval(add(lit(1), mul(lit(2), lit(3))));
// ⇒ ERROR: Called signature ‘eval(mul(...,...))‘ does not match

Although from the perspective of the current module, eval is defined for both
addition and multiplication, when the definition for add recursively calls eval,
the only available cases are for literals and addition.

To address this situation, Rascal features another import directive,
extend, to “open up” recursively defined functions defined in a module. As
a result, the additional cases will participate in the recursion. So changing
import to extend in the ExpMul module above will give the correct answer when
evaluating nested multiplications.

Another Rascal feature to make language definition functions like eval

complete, even for arbitrary extensions to the Exp data type, are default
definitions: default int eval(Exp ) = −1;. They act as a catch all rule when no
others are applicable.

The module extension pattern is similar to how inheritance in object-
oriented language works, and is similarly based on open recursion. Each
module can be roughly considered to be a class and name resolution of (recur-
sive) function calls is implicitly parameterized by self, which is the (extend-
ing) module where the initial call originated. The visibility of declarations
can be controlled in a similar way.

The example above served to illustrate extension of algebraic data types
and functions specified in a case-based fashion. The same pattern also applies
to extension of concrete syntax definitions.

Modularization in Rascal is tailored towards open extensibility but still
lacks certain features (e.g., renaming of sorts and functions on import) or
provides different mechanisms (e.g., parameterized types versus parameter-
ized modules) compared to its ancestor language Asf+Sdf [5]. Providing
a formal account of Rascal’s module system, however, remains an important
direction for future work.

3. Case study: Oberon-0 implemented in Rascal

3.1. Introduction

Oberon-0 is a relatively simple, imperative language designed by Niklaus
Wirth and used in his book on compiler construction [2]. The LDTA’11 Tool
Challenge consisted of implementing this language. The challenge distin-
guished four language levels; in each level five tasks needed to be completed.
The four language levels are:
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• L1: Basic control flow statements, constant, type and variable declara-
tions, assignments and expressions.

• L2: Extension with FOR-statements and CASE-statements.

• L3: Definition of (nested) procedures and procedure call statements.

• L4: Support for arrays and records, including subscript and field selec-
tion expressions and assignment statements.

The five tasks are:

• T1 (Syntax): Syntax analysis: (a) mapping source text into a parse
tree (parsing); and (b) mapping a parse tree back to text (pretty print-
ing, formatting).

• T2 (Bind): Name analysis: bind each use of a name to its definition.

• T3 (Check): Type checking: checking that all language constructs are
used in a type-correct manner.

• T4 (Desugar): Desugaring: mapping language extensions to previous
language layers.

• T5 (Compile): Compilation: compile an Oberon-0 program into C
code.

In addition to these five given tasks, however, we have implemented the
following additional tasks:

• T6 (Eval): An interpreter for Oberon-0.

• T7 (ToJava): Compilation to Java source code (defined for L4).

• T8 (ToJVM): Compilation to byte code (defined for L4).

• T9 (CFlow): Control-flow graph extraction and visualization.

Finally, Oberon-0 programs can be edited in an automatically generated
editor with basic IDE features, including syntax highlighting and code fold-
ing. The source code of our complete Oberon-0 implementation can be
found at https://github.com/cwi-swat/oberon0/tree/ldta-only.
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3.2. The Challenge in Rascal

Rascal allows programming languages to be implemented in a modular
fashion, through the simultaneous extension of syntax definition (grammars),
algebraic data types (ADTs) and functions operating on data conforming to
these data types. The Oberon-0 implementation consists of four layers each
corresponding to a language level. Each new layer extends the previous layer.

Level L1 represents the base language: all relevant syntax, data types and
functions are introduced here. In the subsequent levels any of these types
and functions may have to be extended. For instance, in L2, where the FOR
and CASE statements are introduced, the grammar and AST definition of L1

are extended with new alternatives to deal with these constructs. Similarly,
the functions for name analysis, type checking and formatting are extended.
The compiler to C, however, does not require extension; instead FOR and
CASE statements are desugared to L1 constructs.

Extension in Rascal works through the extend construct (explained ear-
lier in Section 2.2). For grammars and ADTs the definitions of the extended
module and the extending module are simply merged. Function extension,
on the other hand, requires that functions are defined using pattern-based
dispatch, for each case in an algebraic data type. Consider, for instance,
the following rule implementing the check function for type-checking WHILE
statements:

set[Message] check(whileDo(c, b)) = checkCond(c) + checkBody(b);

where checkCond and checkBody return a set of messages and + represents set
union. The complete implementation of the check function consists of mul-
tiple such rules, one for each AST constructor. Such definitions may be
distributed over different modules to construct extension hierarchies using
the extend mechanism. For instance, in L3 where procedure definitions and
procedure calls are introduced, the check function is extended by adding an
implementation rule dispatching on the AST constructor for procedure calls.
In the Oberon-0 implementation, this pattern was used to modularize name
analysis, type checking, formatting, and compilation.

For syntax and abstract syntax the mechanism is similar. In higher layers
(i.e., L2, L3, and L4), extension modules add alternatives to both grammars
and ADTs. In L3 this mechanism is also used to extend the symbol table
data type to deal with nested scopes.
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syntax Statement
= assign: Ident ":=" Expression
| ifThen: "IF" Expression "THEN" {Statement ";"}+ ElsIfPart∗ ElsePart? "END"

| whileDo: "WHILE" Expression "DO" {Statement ";"}+ "END"

| skip: ;

syntax ElsIfPart = "ELSIF" Expression condition "THEN" {Statement ";"}+ body ;
syntax ElsePart = "ELSE" {Statement ";"}+ body;

Listing 1: Concrete syntax definition of Oberon-0 statements in L1

3.3. Scanning and parsing

Rascal’s syntax definitions are backed by a scannerless variant of the GLL
parsing algorithm [6]. Scannerless parsing solves the problem of modular lex-
ical syntax. To deal with (lexical) ambiguities, Rascal has built-in support
for longest-match and keyword reservation. Each language level may intro-
duce additional reserved keywords, that are not reserved in previous levels.
For instance, the “FOR” keyword, introduced in L2, is not reserved in L1.

Grammars are annotated with constructor names to obtain automatic
mapping of concrete syntax trees to ASTs. The Rascal standard library
function implode converts a concrete syntax tree into an AST, given an ADT
definition of the abstract syntax. Implode uses the reified ADT as a recipe.
Reified types are reflective value representations of Rascal types. The
information in the reified type is used by implode to decide how a concrete
tree must be mapped to an AST. For instance, some lexical concrete syntax
nodes are mapped to (native) integers if this is dictated by the abstract
syntax ADT.

The statement syntax of Oberon-0 L1 is defined using the grammar
shown in Listing 1. Alternatives can be labeled with a constructor name that
corresponds to a constructor in the abstract syntax, which (for statements) is
defined as shown in Listing 2. In the abstract syntax ordinary Rascal lists
are used to represented optional or repeated entities defined in the concrete
syntax by regular operators: N?, N+, N∗, {N sep}+, {N sep}∗ for any non-
terminal N and literal separator sep.

If a syntax production is not labeled (like ElsIfPart and ElsePart), implode
will assume that these concrete nodes do not represent explicitly typed
AST nodes, and are inlined. For instance, the optional ElsePart becomes a
list[Statement] in the abstract syntax. Alternatively, implode can map con-
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data Statement
= assign(Ident var, Expression exp)
| ifThen(Expression condition, list[Statement] body, list[ElsIf] elseIfs, list[Statement] elsePart)
| whileDo(Expression condition, list[Statement] body)
| skip();

alias ElseIf = tuple[Expression condition, list[Statement] body];

Listing 2: Abstract syntax definition of Oberon-0 statements in L1

crete nodes to anonymous tuple nodes. This is illustrated in the case of
ElsIfPart, which is mapped to a tuple containing a condition expression and
list of statements, defined by the alias ElseIf (Listing 2).

The Rascal parser annotates concrete syntax trees with source locations
(a native datatype in Rascal). The implode function propagates these
locations to the AST so that meaningful error messages can be given during
later processing. Additionally, implode annotates the AST with comment
nodes so that a pretty printer can reinsert them.

For instance, imploding the parse tree of the expression “a (* this is

A *) + b”, produces the following AST:

Expression: add(
lookup(id("a")[

@location=|file:///exp.ob0|(0,1,<1,0>,<1,1>)
])[
@location=|file:///exp.ob0|(0,1,<1,0>,<1,1>),
@comments=()

],
lookup(id("b")[

@location=|file:///exp.ob0|(20,1,<1,20>,<1,21>)
])[
@location=|file:///exp.ob0|(20,1,<1,20>,<1,21>),
@comments=()

])[
@location=|file:///exp.ob0|(0,21,<1,0>,<1,21>),
@comments=(0:["(* this is A *)"])

]

The location annotations provide exact source locations of each AST node,
listing filename, offset, length, begin and end line, and begin and end column.
The comments annotation contains a map from positions inbetween production
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lexical Comment = "(*" CommentElt∗ "*)";
lexical CommentElt

= CommentChar+ >> "*)"

| CommentChar+ >> "(*"

| Comment;

lexical CommentChar
= ![∗(]
| [∗] !>> [)]
| [(] !>> [∗];

Listing 3: Grammar describing Oberon-0’s nested comments

elements to comment strings. In the example, the comment “(* this is A *)”
is positioned at 0, because it is the first layout position according to the
syntax production for addition, right after the first operand.

Scannerless parsing means that there is no separate tokenization phase:
both lexical and context-free syntax are described using the same grammar
formalism. This makes it, for instance, trivial to support Oberon-0’s nested
comments, the grammar for which is shown in Listing 3. In essence, this
is just context-free syntax, except that the lexical keyword indicates that no
layout (i.e. spaces, tabs, comments and newlines) is allowed between symbols.
The CommentChar non-terminal captures all characters which are not “∗” or
“(” using the negated character class ![∗(]. The characters “∗” and “(” are
allowed, however, if they are not followed by “)” and “∗”, respectively. This
look-ahead restriction is expressed using the follow restriction “!>>”, which
reads “must not be followed by”. The positive follow restrictions (“must
be followed by”) on CommentChar+ ensures longest match on non-recursive
CommentElts.

3.4. Formatting

Formatting in Rascal consists of mapping (abstract) syntax trees to Box
constructs [7]. The resulting Box expressions describe how elements should
be laid out, e.g., horizontally, vertically, indented or aligned, which font-style
to use, and how adjacent elements should be spaced relative to one another.

As an example, consider the formatting of the WHILE statement in List-
ing 4. Again this function uses pattern-based dispatch to match the AST
constructor for WHILE statements. The result of the function is a Box ex-
pression (which is just an ADT in Rascal). The result dictates that the
WHILE and DO are both keywords (KW), and the condition c is formatted
using the function exp2box. The L constructor injects string values into the
Box data type. All three sub-boxes are laid out horizontally (H). Finally,
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Box stat2box(whileDo(c, b)) = V([
H([KW(L("WHILE")), exp2box(c), KW(L("DO"))])[@hs=1],

I([V(hsepList(b, ";", stat2box))]),
KW(L("END"))

]);

Listing 4: Formatting WHILE-statements

the horizontal spacing between the elements should be 1, as indicated by the
annotation @hs=1. The body b of the WHILE statement should be indented
one level (indicated by the I construct), and the statements should be placed
vertically. The helper function hsepList is used to correctly combine separated
lists where the separator (“;”) should be horizontally combined with an ele-
ment; it is parameterized by a function to convert each element of the list to
a Box expression (i.e. stat2box). Finally, the three sub-boxes are wrapped in
a V box so that the header, body and END keyword are placed vertically.

A common problem with pretty-printing is the (re)insertion of parenthe-
ses in binary expressions according to the precedence and associativity rules
of the grammar. In Rascal this can be solved using reified types. In Sec-
tion 3.3, we described how implode used the reified type of the abstract syntax
ADT to guide the mapping of concrete syntax trees to ASTs. In this case
we proceed the other way around: we use the reified type of the grammar
to obtain precedence and associativity information. Since all non-terminals
are first-class types in Rascal, obtaining the reified type of a non-terminal
gives us the complete grammar.

To illustrate how this works, consider the following formatting rule for
multiplication expressions:

Box exp2box(p:mul(lhs, rhs)) =
H([exp2box(p, lhs), L("*"), exp2box(p, rhs)])[@hs=1];

This rule lays out expressions horizontally. But instead of calling directly the
unary function exp2box on lhs and rhs, there is an intermediate call to exp2box

with two arguments; in both cases the first argument is p which is bound
to the current expression using the capturing colon (:) in p:mul(lhs, rhs). This
parent expression is used to decide whether to insert parentheses or not:

Box exp2box(Expression parent, Expression kid) =
parens(PRIOS, parent, kid, exp2box(kid), parenizer);

Box parenizer(Box box) = H([L("("), box, L(")")])[@hs=0];
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In this example, the global constant PRIOS contains the precedence informa-
tion obtained from the grammar. The parens function checks if the occurrence
of kid directly below parent requires parentheses, and if so, it calls parenizer on
the Box expression resulting from exp2box(kid). The function parenizer sim-
ply horizontally wraps the argument with parentheses. Different parenizer

functions can be defined and called where appropriate, if different kinds of
parentheses are required.

As described in Section 3.3, AST nodes are annotated with comments.
Our current pretty printer, however, does not use these annotations to rein-
sert comments into the formatted output.

3.5. Name analysis

Name analysis consists of a traversal of the AST that performs two tasks at
the same time:

1. Annotate use sites of variables, types and constants with their decla-
rations.

2. Maintain a set of error messages, indicating problems such as unde-
clared identifiers.

These two concerns are implemented in functions bindModule, bindStat, bindExp

etc. They carry around a NEnv environment which contains the names that
are currently in scope. It is defined as an algebraic data type to allow ex-
tension later on: data NEnv = scope(map[Ident, Decl] env). If an identifier is en-
countered, it is looked up in the environment and, if found, the identifier is
annotated using a Rascal annotation representing the declaration. Anno-
tations can be attached to values of type node, which includes ADT values
as well as concrete syntax trees. It has to be declared for a specific ADT
type and can contain itself a value of an arbitrary type. The annotation of
parse trees with source location information mentioned in 3.3 uses this same
mechanism. Since all data is immutable, annotating a value returns a new
value.

In order to both annotate ASTs and return a set of error messages the bind

family of functions returns a tuple containing an AST node and a set of error
messsages. As an example, consider the binding of the IF-statement, shown
in Listing 5. The function heavily uses Rascal’s destructuring assignment
to simultaneously replace parts of the AST and update the errs variable.
For instance, the first statement invokes bindExp to bind the condition of the
IF-statement; the resulting annotated expression is inserted in place of the
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tuple[Statement, set[Messages]] bindStat(s:ifThen(c, b, eis, e), NEnv nenv, set[Message] errs) {
<s.condition, errs> = bindExp(c, nenv, errs);
<s.body, errs> = bindStats(b, nenv, errs);
s.elseIfs = for (ei ← eis) {
<ei.condition, errs> = bindExp(ei.condition, nenv, errs);
<ei.body, errs> = bindStats(ei.body, nenv, errs);
append ei;
}
<s.elsePart, errs> = bindStats(e, nenv, errs);
return <s, errs>;

}

Listing 5: Binding analysis of the Oberon-0 IF-statement

default tuple[Ident, set[Message]] bindId(Ident x, NEnv nenv, set[Message] errs) {
if (isVisible(nenv, x)) {
return <x[@decl=getDef(nenv, x)], errs>;
}
if (x.name in {"TRUE", "FALSE"}) {
return <x[@decl=trueOrFalse(x.name == "TRUE")], errs>;
}
return <x, errs + { undefIdErr(x@location) }>;
}

Listing 6: Binding analysis for identifiers

original condition (s.condition). The for-loop folds over the list of ELSIF’s
while at the same time (possibly) updating the set errs. The final result is a
tuple containing the annotated IF-node (s) and the set of errors errs. Note
that, although the (destructuring) assignments seem to suggest that parse
trees are updated in-place, this is not the case. The bind functions thus return
new, annotated ASTs. Persistent data structures used under the hood ensure
that this is not inefficient.

The annotation of identifiers is implemented using the function in List-
ing 6. This function checks the name environment (nenv) to determine whether
the identifier x is currently visible. If so, x is annotated with its definition
(x[@decl=...]). If x represents one of the constants TRUE or FALSE, the reference
is annotated accordingly. Otherwise, the identifier is undeclared and an error
is produced, containing the source location of x. Note that the function is
marked default, to support overriding this function in language level 3, when
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set[Message] check(s:call(f, as)) {
errs = {};
if (!(f@decl is proc)) errs += { notAProcErr(f@location) };
else {

fs = (f@decl).formals;
arity = ( 0 | it + size(ns) | formal( , ns, ) ← fs );
if (size(as) 6= arity) errs += { argNumErr(s@location) };
else {

i = 0;
for (frm ← fs, n ← frm.names) {

errs += checkFormal(n, as[i], frm.hasVar);
i += 1;
}
}
}
return ( errs | it + check(a) | a ← as);
}

Listing 7: Checking Oberon-0 procedure calls

(nested) procedures are introduced and the lookup semantics change.

3.6. Type checking

Similar to name analysis, type checking is a traversal of the AST, computing
a set of error messages. Unlike in the case of name analysis, however, the
AST is not annotated with further information; all required annotations
are assumed to be set during name analysis. This simplifies type checking
considerably, since all required information is local to a certain AST node.

As an example, consider the code to check procedure calls in Listing 7.
There are three cases to consider. First, if the called name f is not declared
as a procedure, an error message is added to the set errs. Second, if f is
a procedure, but there is an arity mismatch, an error is produced as well.
Third, if there’s no arity mismatch, the actual arguments are checked against
the formal parameters of the declaration of the procedure f using the func-
tion checkFormal. Finally, the actual arguments themselves are checked. The
notation ( x | ... it | y ) is a reducing comprehension.

3.7. Source-to-source transformation

Rascal features built-in support for structure-shy traversal of data struc-
tures using the visit statement. Visit works like a traditional case state-
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list[Statement] for2while(list[Statement] stats) {
return innermost visit (stats) {
case forDo(n, f, t, [], b) ⇒ forDo(n, f, t, [nat(1)], b)
case forDo(n, f, t, [by], b) ⇒

begin([assign(n, f), whileDo(leq(lookup(n), t),
[∗b, assign(n, add(lookup(n), by))])])

}
}

Listing 8: Desugaring Oberon-0 FOR-loops to WHILE-loops

ment, with the difference that cases are matched at arbitrary depth in a data
structure. There are 6 builtin strategies to control the traversal order. Vis-
ited nodes maybe replaced, thereby rewriting the tree, similar to the traversal
functions of Asf+Sdf [8] and rewrite strategies of Stratego [9].

The desugaring of FOR-loops and CASE-statements both heavily depend
on the visit-statement. For instance, the desugaring of the for-statements
introduced in L2 is shown in Listing 8. Note that the function for2while takes
an arbitrary list of statements as argument, but the cases in the visit only
mention cases of interest. Traversal inside arbitrarily nested statements is
taken care of by visit. The innermost strategy furthermore applies the rewrite
rules repeatedly until the argument tree stats does not change anymore.

The desugaring works by first normalizing FOR-loops without a BY-
clause to FOR-loops with a BY-clause of 1 (nat(1)). Then, in the second case,
FOR-loops are replaced by equivalent L1 Oberon-0 nodes. Since a single
FOR-loop is desugared to a sequence of statements, we use a temporary AST
constructor, begin, to allow inserting multiple statements in place of one. The
begin nodes are spliced (using the prefix ∗ operator) into their surrounding
context in a later phase:

list[Statement] flattenBegin(list[Statement] stats)
= visit (stats) { case [∗s1, begin(b), ∗s2] ⇒ [∗s1, ∗b, ∗s2] };

Note the use of associative list matching and splicing to flatten the list of
statements b into the surrounding list.

The desugaring of the CASE-statement to nested IF-statements is imple-
mented in a similar way.

15



3.8. Code generation

Code generation to C works in two phases. The first phase consists of a
source-to-source transformation on Oberon-0 to make all identifiers unique
and to lift all nested procedures to the top level [10]. The second phase prints
such normalized Oberon-0 programs to flat C code.

Although it would have been possible to define an abstract syntax for C
and then use Rascal’s Box formatting to obtain a textual representation
suitable for compiling to machine code, we have instead opted for a simpler,
more pragmatic approach using string templates. In Rascal string literals
can be interpolated with expressions, conditional statements (if) and loops
(for, while, do-while). This makes string templates very convenient for gen-
erating code. Moreover, using the explicit margin markers (single quote ’),
such templates are convenient to write and the result will be automatically
indented. For instance, Listing 9 shows the code to generate C code for
Oberon-0’s WHILE loops and IF statements. In both string templates the

str stat2c(whileDo(c, b)) = "while (<exp2c(c)>) {

’ <stats2c(b)>
’}";

str stat2c(ifThen(c, b, ei, ep)) = "if (<exp2c(c)>) {

’ <stats2c(b)>
’}<for (<ec, eb>← ei){>
’else if (<exp2c(ec)>) {

’ <stats2c(eb)>
’}<}>
’<if (ep 6= []){>
’else {

’ <stats2c(ep)>
’}<}>";

Listing 9: Using auto-indenting string templates to generate C-code

statements within statement blocks will be indented relative to the margin.
All whitespace to the left of the margin is discarded.

3.9. Interpretation

Interpretation is implemented using pattern-based dispatch to support ex-
tension. A fragment of the interpreter for statements is shown in Listing 10.
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The function evalStat returns a State value which initially contains just a rep-
resentation of the heap. The State data type is extended in L3 to support
input/output as well. The Env argument represents bindings of identifiers
to memory addresses, types, or constant values. In L3 environments are
extended to support bindings to procedures.

State evalStat(assign(v, exp), Env env, State state) {
state.mem = update(lookupAddress(v, env, state.mem), eval(exp, env, state.mem), state.mem);
return state;
}

State evalStat(ifThen(c, b, eis, ep), Env env, State state) {
if (evalCond(c, env, state.mem)) return evalStats(b, env, state);
if (<ec, eb> ← eis, evalCond(ec, env, state.mem)) return evalStats(eb, env, state);
return evalStats(ep, env, state);
}

State evalStat(whileDo(c, b), Env env, State state) {
while (evalCond(c, env, state.mem)) state = evalStats(b, env, state);
return state;
}

Listing 10: Fragment of the Oberon-0 interpreter in Rascal (L1).

3.10. Java and JVM byte code generation

The compilation of Oberon-0 to Java source code uses string templates
similar to the compilation to C (cf. Listing 9). Since Java does not support
call-by-reference (needed for VAR parameters), an Oberon-0 program is
first transformed to use an explicit stack for all variables (global and local)
and procedure parameters. To support composite assignment (i.e. record to
record and array to array) the program is transformed so that such assign-
ments are represented using multiple atomic assignments. This program is
then directly pretty printed to equivalent Java.

The compilation to JVM byte code also requires the normalization of
Oberon-0 programs. It then constructs a Rascal value representing the
JVM byte code. Using the JVM API included in Rascal’s standard library,
the code can be executed directly from within Rascal.
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3.11. Control-flow extraction

Control-flow extraction consists of analyzing the syntactic structure of a pro-
gram to obtain a graph that represents the flow of control between state-
ments. Graphs are represented as (binary) relations between nodes; each
node in a control-flow graph is identified by the source location (loc) of a
statement or expression. The extraction function for WHILE-loops is shown
in Listing 11.

First a choice node is created based on the condition of the loop. Then
the entry and exit edges are created, going from the while-statement itself to
the condition. If the body of the loop contains statements, edges are created
from the choice node to the first statement in the loop-body, and from the
last statement back to the choice node. If there are no statements, the choice
node loops back to itself.

CFlow statementCFlow(w:whileDo(cond, body), CFlow cfl) {
cfl.nodes[cond@location] = choice(cond@location, cond);

cfl.entry += {<w@location, cond@location>};
cfl.exit += {<w@location, cond@location>};

if (body 6= []) {
cfl.succ += {<cond@location, head(body)@location>};
cfl.succ += {<last(body)@location, cond@location>};
cfl = statementListCFlow(body, cfl);
}
else {

cfl.succ += {<cond@location, cond@location>};
}
return cfl;
}

Listing 11: Control-flow extraction for WHILE-loops

Extracted control-flow graphs can visualized by mapping them to a Figure,
a data type included in Rascal’s standard library for modeling interactive
visualization [11]. An example of this is shown in Figure 1 on page 22.

4. Artifacts

The Oberon-0 implementation in Rascal consists of the modular imple-
mentation of each task for each language level (when appropriate). An
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T1 T2 T3 T4 T5 Total
Syntax Bind Check Desugar Compile

L1 244 162 146 – 60 612
L2 80 44 26 39 – 189
L3 73 117 39 – 106 335
L4 90 67 53 – 48 258

Total 487 390 264 39 214 1394

Table 1: Overview of the structure and size (#SLOC) of the Rascal implementation of
each task Ti, i = 1, ..., 5 for each Oberon-0 language level Lj , j = 1, ..., 4.

overview is shown in Table 1. Task T1 includes the code for the grammar,
AST data type, pretty printing rules and AST normalization. The code for
T2 consists of the scope data type and the bind functions. T3 is covered by the
check function. T4 only applies to L2 and performs the desugaring of FOR
and CASE statements. Finally, T5 contains the code for compilation to C
and the lambda-lifting transformation to lift nested procedures and renaming
identifiers [10].

The columns in Table 1 capture artifact dependencies, i.e., Ti depends
on tasks T0, ..., Ti−1. For instance, T3 (Check) requires that name analysis
has been applied to the AST. The row dimension indicates extension: each
higher level (lower in the table) extends the previous level. The extension
applies to syntax definition, algebraic data types, and functions.

As described in Section 3, we have implemented additional tasks T6, ...,
T9. An overview of the structure and size of these tasks is shown in Ta-
ble 2. The evaluator component includes data types to model the heap and
environment. The special task T ′7,8 represents a normalization operation on
Oberon-0 programs required for the compilation to Java and JVM bytecode
(see Section 3.10). This normalization component transforms Oberon-0
programs to use an explicit stack and eliminates type and constant refer-
ences. The control-flow visualization (CFlow) is divided in two parts: ex-
tracting a control-flow graph and transforming this graph to a Figure object,
which can be rendered on screen [11].

5. Discussion

The experience developing Oberon-0 in Rascal has been generally posi-
tive. Nevertheless, there are some areas where we think Rascal could still

19



T6 T ′7,8 T7 T8 T9 Total
Eval Normalize ToJava ToJVM CFlow

L1 211 – – – 121 332
L2 – – – – 71 71
L3 167 – – – 36 203
L4 117 743 78 116 – 1054

Total 495 743 78 116 228 1660

Table 2: Overview of the structure and size (#SLOC) of additional Oberon-0 tasks Ti,
i = 6, ..., 9 for each language level Lj , j = 1, ..., 4.

be improved. Below we discuss what we think contributed to our positive
experience and identify areas for further improvement.

Rascal’s grammar formalism is very powerful and expressive. As a result
the grammar can be written with an eye to the desired abstract syntax: es-
sentially the grammar does not have to be factored in awkward ways to satisfy
the parser. This makes defining the syntax of a language very declarative and
modular. The Eclipse-based IDE, read-eval-print-loop (REPL) and built-in
testing framework are very helpful in developing and debugging language im-
plementations. Furthermore, Rascal includes the tools AmbiDexter [12]
and DrAmbiguity [13] for (conservatively) checking (non-)ambiguity, and
for diagnosing ambiguous parse forests respectively. These tools have been
instrumental in creating correct grammars for Oberon-0.

Although the AST could easily be automatically derived from concrete
syntax trees, the current scheme of using the abstract ADT as a recipe to
guide the “implosion” process allows additional flexibility. This allows, for
instance, the implosion of lexical tokens (identifiers, integers etc.) to different
Rascal primitive types. It also supports skipping over irrelevant chain rules
(injections) and flattening of nested lists. The feature that makes this kind
of guided implosion work, is that Rascal types can be inspected at run-
time. This was also essential for letting the pretty printer insert parentheses
when expressions need them. Since a Rascal grammar defines types (non-
terminals and productions), we were able to inspect the Oberon-0 grammar
itself to derive the precedence relation.

The name and type analysis tasks are implemented by programming
rather than by way of a declarative specification. The powerful pattern
matching and traversal features and built-in data structures of Rascal make
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this quite easy. The approach of programming instead of declarative spec-
ification gives greater expressivity and flexibility but makes formal analysis
of these tasks more difficult. By breaking a function into separate “rules”
that dispatch on the relevant AST constructors both analyses as well as code
generation could be modularized and extended in later language levels.

With respect to extension, however, we sometimes had to anticipate later
extension of the code. The Rascal extend mechanism is currently not pow-
erful enough to override a previous definition and hence it is currently impos-
sible to reinterpret an existing language construct. One example is making
function definitions default, to allow later overriding. (e.g., bindId of Listing 6).

The only extensibility Rascal currently caters for is syntactic: you may
add another function alternative (e.g., bind, check) for the new construct,
but you cannot revise an existing case. We are currently investigating how
function definitions can override a previous definition handling the same case.
This would allow calling the previous definition using a special keyword (sim-
ilar to super in OO languages).

Another direction for improvement is concerned with how state and con-
text information currently has to be manually threaded through recursive
functions. A restricted form of dynamically scoped variables could elimi-
nate a significant amount of boilerplate and scaffolding code. Such variables
would work like function parameters, except that they are not explicitly
passed around [14]. For instance, the bind function currently receives the
current set of error messages and has to return tuples of an annotated AST
and the new set of error messages. With dynamic variables, the set of error
messages would be initialized as a local, but dynamically scoped, variable in
the first call to bind. Each recursive invocation of bind would update that very
same variable.

An open problem regarding the modularity of our implementation is that
operations, such as type checking or compilation, might require that other
operations, such as name analysis or desugaring, have been performed on
the AST. Currently, this is not enforced by the type system for two reasons.
First, annotations are not part of a data type. It is therefore impossible
to require certain annotations to be present. Second, transformations of
ASTs are often considered to be type preserving. Desugaring, for instance,
transforms an AST of a certain type to another AST of the same type. As a
result, whether such a transformation has been applied cannot be enforced.

The code generation to C is currently implemented using Rascal’s string
templates. While very convenient and flexible, there is some overlap in func-
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Figure 1: Screen shot of the Rascal Oberon-0 IDE showing editors with an Oberon-0
program (left), the generated C code (middle) and a control-flow visualization.

tionality with pretty printing using Box. It would be interesting to see if
some of the formatting features of Box could be integrated into the string
templates. More generally, we think a better integration of Box into the
language as a whole would make the development of pretty printers much
easier. This would involve a much closer integration with the concrete syn-
tax features of Rascal and enabling, for instance, automatic handling of
parenthesis insertion.

To conclude, our experience implementing Oberon-0 shows that Ras-
cal is a suitable language for prototyping languages in a modular fashion,
with relatively little effort. All five tasks across the four language levels have
been implemented in under 1500 source lines-of-code. Finally, we have imple-
mented an Oberon-0 IDE using Rascal’s lightweight hooks into Eclipse.
A screen shot of the Oberon-0 IDE is shown in Fig. 1
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6. Related Work

Modularity in programming language descriptions has a long and rich re-
search history. Modular language engineering has also received ample atten-
tion from researchers from diverse backgrounds. In this section we give a brief
overview of related work that directly touches upon the case study and the
proposed solutions we report on in this paper. The key observation is that
various aspects of language syntax and semantics are addressed by different
formalisms and techniques that cannot be easily combined and integrated.
We also indicate how Rascal fits into this picture.

Modular syntax. The Syntax Definition Formalism SDF [15] was one of the
first formalisms to propose modular syntax definitions. The desire to com-
pose grammars implies the need for modular lexers [16, 17] and parsers
[18, 19]. Modular syntax has been applied, amongst others, in ASF+SDF [5],
SDF2 [20], and Stratego [9]. With the same goals, but using different tech-
niques, modular grammars were also introduced in TXL [21]. It is noteworthy
that TXL provides an override mechanism for syntax rules that has never
been introduced in SDF. Recent work on the semantics of modular grammar
specification can be found in [22]. Rascal builds upon the SDF tradition
but extends it regarding notation, disambiguation mechanisms, and tight in-
tegration of abstract and concrete syntax trees. Outside the realm of general
parsing, modularity of syntax has received attention in the context of Parsing
Expression Grammars (PEGs) (e.g., [23]) and LALR parsing [24, 25].

Modular static semantics. Attribute grammars [26] are the classical method
for expressing static semantics and various extensions have been proposed
to make them modular; see for instance [27, 28, 29, 30, 31]. Integration of
attribute grammars and functional languages has been proposed and applied
with success [32, 33, 34]. Finally, Ruler is a modular system dedicated to
programming type rules [35].

Modular dynamic semantics. For decades, dynamic semantics has been a
focus of classical research on programming language semantics. Early ap-
proaches to semantics, such as denotational semantics [36], did not consider
modularity. In subsequent approaches, e.g., monadic semantics [37], Action
Semantics [38], an attempt was made to tackle modular aspects of dynamic
semantics. Another effort along these lines is Modular Structural Opera-
tional Semantics [39]. Modular algebraic approaches to language definition
are described in [40] and [41].
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Tools and Language Workbenches. Combinations of the above techniques
have been included in various tools, IDEs and language workbenches. See
[42] for a recent survey of the state-of-the-art of language workbenches. Some
notable examples are Asf+Sdf Meta-Environment [43, 44], MPS [45, 46],
and Spoofax [47]. Other relevant approaches to modular language implemen-
tation are described in [48], [49], [50] and [51]. Rascal falls in this category
of tools: it aims to be a one-stop-shop for language implementations, in-
cluding support for syntax definition, static analysis, dynamic semantics and
code generation. All language aspects, including tools and IDE extensions,
can be described within a single linguistic framework. An earlier experiment
exercised modular language implementation using Rascal in the context of
the Language Workbench Challenge in 2011 (LWC’11) [4].

7. Conclusion

Modular language implementations facilitate language evolution by promot-
ing modular language extension. In this paper we have elaborated an exten-
sive case study in modular language implementation. The implementation
of four language levels of Oberon-0 in Rascal shows that it is indeed
possible to realize each next level as an extension of the previous level. Ras-
cal’s modularity features contributing to this feat are: modular definition
of concrete, lexical and abstract syntax, the module system’s extend feature,
together with extensible, case-based function definitions. Finally, we have
identified directions of further improvement to support open language mod-
ules, and implicit passing of context information. The complete language
implementation required less than 1500 SLOC; this includes parsing, name
analysis, type checking, desugaring, lambda-lifting and compilation to C.
Additional tasks – interpretation, compilation to Java and control-flow ex-
traction and visualization – were realized with minimal effort as well.
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