
Sustainable Automated Data Recovery: A Research Roadmap
Jeroen van den Bos

Netherlands Forensic Institute

The Hague, The Netherlands

Zuyd University of Applied Sciences

Heerlen, The Netherlands

jeroen@infuse.org

ABSTRACT
Digital devices contain increasingly more data and applications.

This means more data to handle and a larger amount of different

types of traces to recover and consider in digital forensic inves-

tigations. Both present a challenge to data recovery approaches,

requiring higher performance and increased flexibility.

In order to progress to a long-term sustainable approach to auto-

mated data recovery, this paper proposes a partitioning into man-

ual, custom, formalized and self-improving approaches. These ap-

proaches are described along with research directions to consider:

building universal abstractions, selecting appropriate techniques

and developing user-friendly tools.

CCS CONCEPTS
• Applied computing→ Data recovery; Evidence collection, stor-
age and analysis; • Software and its engineering → Automatic
programming; Model-driven software engineering;

KEYWORDS
data recovery, digital forensics, automated software engineering

ACM Reference format:
Jeroen van den Bos. 2017. Sustainable Automated Data Recovery: A Re-

search Roadmap. In Proceedings of 1st International Workshop on Software
Engineering and Digital Forensics, Paderborn, Germany, September 4, 2017
(SERF ’17), 4 pages.
https://doi.org/10.1145/3121252.3121254

1 CHALLENGES IN DIGITAL FORENSICS
The amount of data stored on digital devices continues to increase

as new applications arrive and existing applications are updated

daily. As a result, digital devices take a more prominent place in our

lives and are used for more and more activities. A large amount of

business and personal information accumulates on these devices.

One effect is that digital devices are increasingly the focus of

forensic investigations. This requires forensic investigators to be

able to collect and analyze traces frommany types of devices and ap-

plications. Requirements to answer questions about digital evidence

within a very short timespan (e.g., 48 hours) are not uncommon.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SERF ’17, September 4, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5156-0/17/09.

https://doi.org/10.1145/3121252.3121254

In this time amassive amount of data consisting ofmany different

types of data needs to be investigated. Examples are communica-

tion (spread across e-mail, social networks, messengers, SMS, etc.),

media (such as pictures, videos, audio), and applications (which

create many types of documents). Even when there are no major

complications (such as physical damage to the device or use of

encryption), two major challenges are nearly always present: the

size and variation in types of data.

1.1 The Data Recovery Phase
This paper focuses on the challenges around size and variation of

data in a specific phase of the digital forensics process: recovery.

While there are differences in terminology used to describe the

phases, a high-level division into three main phases is widely agreed

upon[3, 4]. This division separates the digital forensics process into

acquisition, recovery and analysis, as shown in Figure 1.

Acquisition is concerned with making a secure copy of all the

data stored on a device, so that it can be backed up and investi-

gated without risk of data loss. Recovery handles converting the

acquired data into information, i.e., turning raw data (bits and bytes)

into interpretable information that humans can understand (mes-

sages, documents, pictures, etc.) Analysis refers to considering all

recovered information and determining what is relevant to the

investigation or what the answer is to a posed question.

This model can be extended in both directions (such as an iden-
tification and reporting phase before and after respectively) and all

phases can be divided into multiple phases (such as relating infor-
mation and sorting in the analysis phase). The model is kept small

and simple because it is used here only to specify the meaning of

the recovery phase as turning data into information. The rest of this

paper will focus exclusively on the recovery phase.

Acquisition Recovery Analysis

Refine

Error?

Figure 1: Basic model of a digital forensic investigation.

1.2 Size and Variation
Even though Moore’s Law (predicting exponential growth in the

capacity of digital devices) is always being said to be ending soon,

6

https://doi.org/10.1145/3121252.3121254
https://doi.org/10.1145/3121252.3121254


SERF ’17, September 4, 2017, Paderborn, Germany Jeroen van den Bos

it appears to keep going indefinitely. Mobile phones, tablets, and

USB drives are still regularly doubling in storage size and popular

cloud services are offering unlimited plans at low prices.

While the amount of pictures and videos a person can produce

in a day is limited, there are many developments that increase the

amount of data that is produced. An example is that increasing

bandwidth on wireless networks means live video streaming will

become ubiquitous. Additionally, drones with cameras that can take

pictures and film autonomously are gaining popularity.

Diversity of types of data is especially complex due to its many

layers of variation. To illustrate this complexity, consider the most

common type of information stored on any type of digital (storage)

device: pictures. In an abstract sense, a picture is a very simple

thing: a two-dimensional visual representation of something.

Practically however, there are different types of images, such as

whether they are stored as a matrix of pixels (a bitmap-based image)

or a collection of lines and curves (a vector-based image). Both

types have many different ways to be stored on disk, such as JPEG,

PNG and GIF for bitmap-based or SVG, EPS and AI for vector-based

images. All these formats often have different standardized versions

and variants, plus mandatory or optional extensions, such as JFIF

(container) and EXIF (metadata) for JPEG. But even then, developers

of digital cameras and image editing tools each tend to implement

their own subjective interpretation of all these types, resulting in

even more variations.

1.3 Automation and Evolution
The first challenge of size pushes forensic investigations towards

automated digital forensics, the field of performing digital forensic

tasks in software. This way, advances in performance and capacity

of computers is not only a problem, but can also be leveraged to

build ever faster and more scalable systems. However, the second

challenge of variability means that this software must be extremely

flexible and adaptable in order to implement and deal with all these

variations. And not just during initial development: as applications

and services are updated regularly, variations at all levels are dis-

covered continually, prompting changes to the software.

For commercial software vendors that produce software applica-

tions not used in digital forensic investigations, the issues around

variability are much smaller. Consider a word processing applica-

tion such as Microsoft Word. While it is desirable from an inter-

operability point to view to have support for many file formats, a

fixed set of supported formats tends to be acceptable to most users.

Additionally, if a file of a supported type is opened by Word that

has some unknown parts or implements some unknown variant, it

is acceptable to simply inform the user that the file cannot be read.

In forensics however, it is generally unacceptable for some piece

of evidence to not be considered because it does not conform to

some standard or is not supported by some application. As a result,

the burden of providing support for as many types of data as possi-

ble is firmly on the shoulders of the digital forensic investigator.

2 APPROACHES IN DATA RECOVERY
The process of recovering data is not straight-forward: the required

techniques depend on the type of data that was acquired as well as

what turns up in an initial recovery run. In the simplest case, all

acquired data can be interpreted as being in some recognized and

supported format and parsed accordingly. This is a fairly common

case: network captures, live memory dumps, and copies of storage

device contents can be interpreted and parsed as being sets of

network packets, in-memory data structures and disk partitions

with file systems respectively.

However, virtually every acquired piece of data usually contains

some unrecognized parts, such as unknown protocols, memory data

structures or file formats. Additionally, many formats such as mem-

ory layouts and file systems tend to contain areas that are supposed

to be empty, but often contain remnants of previous entries, such

as parts of the heap in memory that were deallocated or deleted

files in a file system. In all those cases, manually investigating and

reverse engineering the unknown parts to build a custom parser

may eventually be required, but is infeasible under time pressure.

Techniques used in these circumstances are file carving[10] and
entity extraction[7].

File carving is based on the assumption that while some piece

of data cannot be parsed in its entirety, it may contain parts that

can. Effectively, file carving is the process of searching through

unstructured data looking for parts that can be recognized. Tech-

niques range from recognizing magic numbers in file headers and

footers up to combinatorial approaches to reassemble deleted and

fragmented files in a file system’s unallocated space.

Entity extraction boils down to entirely the same thing, except

that instead of searching and matching entire data structures or

file formats, matching is done for small entities that can be useful

regardless of where they occur. Examples are names, IP-addresses,

phone numbers and bitcoin addresses. In this situation it does not

matter whether the entities occur in some recognized or explainable

location, but rather that they occur at all may provide some clue.

What this reveals is that all recovery activities depend on the

availability of recognizers and parsers for as many different types

of data as possible. Whether they are run directly on the data, used

to validate assembled fragments by a file carver or used to scan over

unknown data to locate entities, parsers make or break the success

of data recovery. As discussed before, these parsers are preferably

fast and scalable (in order to run quickly and on very large sets of

data) and highly flexible and maintainable (because they must be

continually adapted).

2.1 Types of Automated Data Recovery
This paper proposes that there are four different types of ways to

perform data recovery, ordered by the level of automation involved.

As data sizes as well as variation in encountered data types both

keep growing, progressing to the highest level as described below

will be required in all but the most trivial cases.

2.1.1 Manual Automated Data Recovery. In the digital domain,

labeling an approach as manual is always relative: everything on
or in relation to a digital system is generally performed using some

form of software. In this case, manual refers to the fact that an

investigation is performed by manually chaining different existing

tools together. These tools can be custom developed tools or existing

(open source) applications.

Manual data recovery usually boils down to attempting to mount

a storage device using a file system driver in a virtual machine, or

7



Sustainable Automated Data Recovery: A Research Roadmap SERF ’17, September 4, 2017, Paderborn, Germany

loading a network capture into an analysis framework such asWire-

shark. Whenever some known piece of data is then encountered

(e.g., a picture), it can be examined using a standard picture viewer,

trying different ones if the first is unable to display it. Regions of

unknown data can be extracted and then carved using different file

carvers, until some files are recovered. Possibly an investigator also

uses low-level tools to search this data, such as grep or hex viewers.

This approach generally leads to the development of a set of

standard operating procedures (SOPs) in order to prevent mistakes.

While very resource-intensive, everything can generally be per-

formed by skilled digital forensic investigators without the help of

other professionals.

2.1.2 Custom Automated Data Recovery. When these SOPs lead

to the development of scripts in order to automate them, the type

of data recovery is characterized as custom. After scripting, adding

custom tools to improve runtime performance and scalability aswell

as building libraries of parsers to handle types of data unsupported

by existing tools is the next level in custom data recovery.

Achieving this level of automation typically requires software

engineering skills to build and maintain the non-functional aspects

of the solution. Additionally, reverse engineering skills are required

in order to implement and maintain the libraries of parsers.

This approach leads to the development of an automated data

recovery solution capable of providing levels of performance and

coverage (i.e., support for as many types of data as possible) un-

available in off-the-shelf solutions. If the goal however is to increase

coverage, the amount of effort on development and maintenance

will quickly become extremely high.

The engineering challenges in custom automated data recovery

are complex because they require optimization in different and

opposing directions. Optimizations for runtime performance and

scalability tend to be in direct opposition to those required to opti-

mize for flexibility. For example, flexibility is generally realized by

adding abstractions, while optimizing for performance is usually

the result of merging or removing abstractions.

2.1.3 Formalized Automated Data Recovery. When a custom

approach leads to the application of a language-based, generative

or model-driven approach, it is described as formalized. What these

approaches have in common is that they perform separation of

concerns on the aspects that are difficult to consolidate in a solution

built using scripting or general programming languages.

For example, at the Netherlands Forensic Institute (NFI) a domain-

specific language (DSL) is employed to declaratively describe data

structures such as protocols and file formats[2]. These descriptions

are independent of concerns around runtime performance and also

do not require the developer to have extensive knowledge of parser

construction, since this is all handled by an interpreter.

This approach has many possible variants and extensions, in-

cluding extracting the performance aspects into an abstraction as

well. Given that flexibility and maintainability are the primary con-

cerns facing investigators, abstracting this aspect is crucial, but

others may be added. The advantage of these approaches is that the

different aspects of the solution can be developed and maintained

in complete isolation from the other aspects, reducing complexity

and as a result, improving functional and non-functional qualities.

It is an open question however, whether highly productive tools

such as model-driven engineering provide the necessary benefits

to keep up with requirements. Software and service vendors such

as Google and Microsoft are increasingly applying big data and ar-

tificial intelligence (AI)-based techniques to improve their software,

which may result in refinements and modifications to the types of

data they produce at an extremely high pace.

2.1.4 Self-Improving Automated Data Recovery. Just as the only
feasible approach to dealing with the amount of data produced

by automated solutions is to automate the forensic applications,

there is a similar approach to handling big data and AI-approaches.

Once an automated data recovery solution is capable of (partially)

automating the process of adapting its support for types of data, it

is considered to be self-improving.
There are many possible approaches in this area, but a key re-

quirement in digital forensics is that the output must be verifiable

and explainable by humans. If we base a self-improving approach

on the tools of the formalized approach, we have a clear and usable

intermediate language to target with any AI-technique.

Simply put, it does not matter how an abstract description of

some data type is derived, as long as it can easily be understood

and verified afterwards. This is in contrast to a solution where an

entire recovery application, or even a parser written in a general

programming language would be generated. In both those cases,

the resulting application or code would most likely be very difficult

to understand and thus verify. This is not a far-fetched assumption,

given that engineers tend to have difficulty understanding code

written by other engineers, let alone code generated by some genetic

or evolutionary algorithm.

Plenty of approaches are imaginable in this space to assist in

attaining a self-improving solution. An example is to take a binary

data description language and use a genetic algorithm to discover

a description for it given a set of input files. While discovering a

meaningful description from scratch may be unfeasible currently,

discovering variations of an existing description given a set of

variant files could be achievable.

3 RESEARCH DIRECTIONS
To arrive at a fully automated, formalized and self-improving data

recovery approach in digital forensics forwhich an actual implemen-

tation exists, many challenges remain in the approaches described

in the previous section. Following is a discussion of the major issues,

involving the formalized and self-improving approaches.

3.1 Metamodel Refinement
The formalized and self-improving approaches crucially depend

upon an underlying model (i.e., metamodel) that allows expression

of any possible data structure that may be encountered. While

there is a large amount of research in parsing, most of it focuses

on textual formats for use in compilers and other programming

systems. Fortunately, there is some progress in the area of data

description languages, from both programming languages (most

notably the PADS and related projects[6, 8]) and security research.

Especially promising in this direction is language-theoretic secu-
rity, an area that seeks to abolish the use of hand-crafted parsers in

order to eliminate exploits caused by incorrect handling of inputs[9].

8



SERF ’17, September 4, 2017, Paderborn, Germany Jeroen van den Bos

So while the motivation is different, the goal to find a universal

non-executable description for handling any type of input data is

the same. Most notable in this area are open-source libraries such

as Hammer[13] (in C) and Nom[5] (in Rust).

A contribution by the NFI in this area is the development of the

open-sourceMetal library (in Java)
1
, which has the explicit goal of

being capable of describing any (binary) data structure. To achieve

this, it has support for pointers (i.e., non-local parsing), containers

(i.e., parsing a previously parsed item or composition of items) and

a rich expression system to define data dependencies.

The next step is to develop a library of diverse data structures

using these systems, including network protocols, live memory

layouts, file systems, containers and formats in order to evaluate

and improve the quality of the underlying metamodels.

3.2 Synthesis Techniques
Perhaps because the previous direction has not yet been decisively

resolved there is not much known about the most suitable algo-

rithms to apply from the field of AI to the refinement, improvement

and development of data descriptions. It is essentially a specific

version of the program synthesis problem, which has been discussed

and examined for over 40 years[12].

With the recent advancements in AI-technology and research,

this field has been the subject of renewed interest, mostly in the

area of learning representations. Progress is made to develop small

human-readable programs to handle input-output problems based

on examples[1, 11].

An often-discussed trade-off in this area is the size of the input

and output data and the complexity of the programming language

to generate code for. From this perspective, the automated data

recovery problem is very specific: the input data can be huge (up to

multiple terabytes at a time for network captures or storage device

contents). At the same time, this explains the need to at least keep

the complexity of the formalism to generate a representation in as

low as possible, which is a clear goal of the data description parsing

libraries discussed in the previous subsection.

Progress will depend mostly on assembling suitable sets of train-

ing data, such as a varied set of binary files of the same type which

includes many variations. Such a set can then be used to experiment

with and evaluate techniques in this specific version of the program

synthesis problem.

3.3 User Interfaces
While the discussed parser toolkits make it much easier to develop

parsers for binary data, they still have a long way to go to be

truly user-friendly. Instead of embedded DSLs, which make up the

libraries currently available, stand-alone languages can fully sepa-

rate the concerns between tool development and data description.

A stand-alone data description language has the potential to

connect the output of self-improving approaches to the need for

human understanding. This requires that the language’s metamodel

is suitable for use with synthesis techniques and that the language

itself is understandable for digital forensic investigators.

Along with the languages, user interfaces of investigation tools

must be adapted as well. In order to understand the output of

1
https://github.com/parsingdata/metal

data recovery applications based on (generated) data descriptions,

interactive environments are needed that visualize the provenance

of any recovered piece of data. Even if some synthesized description

ends up being usable but difficult to understand, its output can then

be analyzed in context of the original input data and potentially

clarified manually.

4 CONCLUSION
As Moore’s Law keeps providing more computing power, band-

width and storage keeps growing at a comparable pace. This means

that digital devices become useful in more and more tasks every

day and companies quickly provide applications for many different

tasks. A result is that in digital forensics, investigators continually

need updated methods and tools in order to deal both with more

data and different types of data in an often very limited timeframe.

To structure research in the specific area of automated data re-

covery, this paper proposes partitioning the approaches into four

different types.Manual refers to investigators using individual tools
in some defined process. Custom refers to using software engineer-

ing to develop custom solutions. Formalized refers to abstracting

over the custom approach by using model-driven techniques to sep-

arate concerns. Self-improving refers to automatically maintaining

the formalized descriptions in order to eliminate the dependency

on software and reverse engineers.

Three directions are most important to realize this final self-

improving approach. First is improving formalized data recovery

by refining and evaluating existing (meta)models in the area of

binary data description. Second is the selection and evaluation of

program synthesis techniques from the field of AI, as work in this

specific area is currently non-existent in digital forensics. Finally,

user-friendly languages and tools must be developed so that human

investigators can understand and verify self-improving approaches.

REFERENCES
[1] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin,

and Daniel Tarlow. 2016. DeepCoder: Learning to Write Programs. CoRR
abs/1611.01989 (2016).

[2] Jeroen van den Bos and Tijs van der Storm. 2011. Bringing Domain-Specific

Languages to Digital Forensics. In Proceedings of the 33rd International Conference
on Software Engineering (ICSE’11). ACM, 671–680.

[3] Brian Carrier. 2005. File System Forensic Analysis. Addison-Wesley.

[4] Eoghan Casey (Ed.). 2009. Handbook of Digital Forensics and Investigation. Aca-
demic Press.

[5] Geoffroy Couprie. 2015. Nom, A Byte oriented, streaming, Zero copy, Parser

Combinators Library in Rust. In Security and Privacy Workshops (SPW), 2015 IEEE.
IEEE, 142–148.

[6] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. 2010. The Next 700

Data Description Languages. J. ACM 57, 2 (2010), 10:1–10:51.

[7] Simson L. Garfinkel. 2013. Digital Media Triage with Bulk Data Analysis and

bulk_extractor. Computers & Security 32, 0 (2013), 56–72.

[8] Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics and Algo-

rithms for Data-Dependent Grammars. In ACM Sigplan Notices, Vol. 45. ACM,

417–430.

[9] Falcon Momot, Sergey Bratus, Sven M. Hallberg, and Meredith L. Patterson. 2016.

The Seven Turrets of Babel: A Taxonomy of LangSec Errors and How to Expunge

Them. In Proceedings of IEEE Cybersecurity Development (SecDev’16). IEEE, 45–52.
[10] Anindrabatha Pal and Nasir Memon. 2009. The Evolution of File Carving. Signal

Processing Magazine 26, 2 (2009), 59–71.
[11] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong

Zhou, and Pushmeet Kohli. 2016. Neuro-Symbolic Program Synthesis. CoRR
abs/1611.01855 (2016).

[12] Phillip D. Summers. 1977. A Methodology for LISP Program Construction from

Examples. Journal of the ACM (JACM) 24, 1 (1977), 161–175.
[13] UpstandingHackers. 2012. Hammer, Parser combinators for binary formats in C.

(2012). https://github.com/UpstandingHackers/hammer

9

https://github.com/parsingdata/metal
https://github.com/UpstandingHackers/hammer

	Abstract
	1 Challenges in Digital Forensics
	1.1 The Data Recovery Phase
	1.2 Size and Variation
	1.3 Automation and Evolution

	2 Approaches in Data Recovery
	2.1 Types of Automated Data Recovery

	3 Research Directions
	3.1 Metamodel Refinement
	3.2 Synthesis Techniques
	3.3 User Interfaces

	4 Conclusion
	References

