
lable at ScienceDirect

Forensic Science International: Digital Investigation 38 (2021) 301125
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2021 APAC - Proceedings of the First Annual DFRWS APAC
A contemporary investigation of NTFS file fragmentation

Vincent van der Meer a, *, b, d, Hugo Jonker b, c, Jeroen van den Bos d

a Zuyd University of Applied Sciences, the Netherlands
b Open University of the Netherlands, the Netherlands
c Radboud University Nijmegen, the Netherlands
d Netherlands Forensic Institute, the Netherlands
a r t i c l e i n f o

Article history:

Keywords:
File fragmentation
File carving
Digital forensics
* Corresponding author.
E-mail addresses: vincent.vandermeer@zuyd.nl (V.

ou.nl (H. Jonker), j.van.den.bos@nfi.nl (J. van den Bos
1 https://netmarketshare.com/operating-system-ma

id¼platformsDesktopVersions.

https://doi.org/10.1016/j.fsidi.2021.301125
2666-2817/© 2021 The Authors. Published by Elsevier
a b s t r a c t

There is a significant amount of research in digital forensics into analyzing file fragments or recon-
structing fragmented data. At the same time, there are no recent measurements of fragmentation on
current, in-use computer systems. To close this gap, we have analyzed file fragmentation from a corpus of
220 privately owned Windows laptops.

We provide a detailed report of our findings. This includes contemporary fragmentation rates for a
wide variety of image-, video-, office-, database-, and archive-related extensions. Our data substantiates
the earlier finding that fragments for a significant portion of fragmented files are stored out-of-order. We
define metrics to measure the degree of “out-of-orderedness” and find that the average degree of out-of-
orderedness is non-negligible. Finally, we find that there is a significant group of fragmented files for
which reconstruction is insufficiently addressed by current tooling.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

File fragmentation impacts (amongst others) file system per-
formance and file recovery. Indeed, many studies in these areas rely
on assumptions with respect to fragmentation. In the domain of
digital forensics, this includes studies into file fragment classifica-
tion (e.g., Rahmat et al. (2017)), generic file carvers (e.g., Ying and
Thing (2010), Garfinkel (2007)) as well as file type specific file
carvers (e.g., Durmus et al. (2019), Yang et al. (2017)), and fragment
dating (e.g., Bahjat and Jones (2019)).

For all such studies, contemporary data on file fragmentation is a
necessary prerequisite to determine carving strategies. The most
recent large-scale study of file fragmentation is from 2007 by
Garfinkel (2007), with data gathered from 1998 to 2006. This
corpus is now outdated: it concerns mostly FAT-type file systems,
while Windows (since XP) by default uses the NTFS file system.
Moreover, this corpus concerns deprecated versions of Windows
whose combined market share is below 1.75%.1

To remedy this, we gathered data of file fragmentation on NTFS
van der Meer), hugo.jonker@
).
rket-share.aspx?

Ltd. This is an open access article u
file systems from 220 laptops. These machines are individually
acquired, owned and maintained, and are in regular use by their
owners. As these machines were owned by volunteer participants,
privacy was paramount. Therefore, we designed a privacy-friendly
approach to data gathering (van der Meer et al., 2019). In that work,
we also presented initial fragmentation findings. Key amongst
those was that out-of-order fragmentation occurs fairly frequently
e a type of fragmentation that seems to mostly have been over-
looked in literature.
1.1. Contributions

In this paper, we present in-depth, contemporary data on NTFS
file fragmentation. The main contributions are:

� Our corpus provides a contemporary (Oct’18 e Jan’19) view on
file fragmentation.

� The number of files in the corpus is significantly larger (2e10
times) than previous works (>1 mln .jpg; 14,000 .doc;
87,000 .docx; …).

� We provide novel metrics on the convolutedness of fragmen-
tation: degree of internal fragmentation and degree of out-of-
orderedness.

� We report on a number of fragmentation characteristics: frag-
mentation vs. file size, fragmentation vs. used volume space,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:vincent.vandermeer@zuyd.nl
mailto:hugo.jonker@ou.nl
mailto:hugo.jonker@ou.nl
mailto:j.van.den.bos@nfi.nl
https://www.netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions
https://www.netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions
https://www.netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301125&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301125
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2021.301125


Fig. 1. Examples of the four storage patterns for a bi-fragmented file.

2 https://www.forensicfocus.com/articles/recovering-evidence-from-ssd-drives-
in-2014-understanding-trim-garbage-collection-and-exclusions.

V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
fragmentation per extension, gap size for files fragmented in
two parts, distribution of number of fragments, correlation be-
tween fragmentation and disk size, fragmentation and disk type
(primary/secondary).

� We find (amongst others) that the average degree of out-of-
orderedness of fragmented files is non-negligible. This has im-
plications for the field of digital forensics.

2. Background

2.1. Terminology

We make use of the following NTFS terminology:

MFT: Master File Table; contains metadata (including allocated
blocks) for all files.
Resident files: Files without allocated blocks, whose data is
stored completely in its MFT record.
Compressed files: Files may be compressed by NTFS itself, as
opposed to application-level compression. This compression is
transparent to any application using NTFS.
Sparse files: Files where only blocks containing non-zero data
are stored. The file size of sparse files is thus typically larger than
allocated on disk (Used e.g. for virtual machine files.).
Hard links: An MFT entry may contain more than one
path þ filename. These names appear to the user as individual
files, but there is only one physical representation on disk.
Symbolic links: A symbolic link is an MFT entry that points to a
path þ filename (possibly on another volume, including non-
NTFS volumes). They thus contain no data, only meta data.
Volume: A storage device is a physical unit for storing data. It is
partitioned into one or more volumes, which in Windows are
addressable via drive letters.

In addition, we use HDD to denote Hard Disk Drive, i.e., a storage
medium based on magnetic storage with moving read and write
heads and spinning discs; and SSD to denote Solid State Drive, i.e., a
storage medium based storing data based on integrated circuits
(typically flashmemory), withoutmoving parts.With respect to the
popularity of SSDs versus HDDs: in our dataset (Table 7), we find
that 84% of the laptops use an SSD, and 67% uses an HDD.

2.2. Data storage and deletion on SSDs

SSD devices operate differently than HDDs. For example, to
extend the longevity of the disk, they typically use wear leveling: a
technique to avoid writing overly much in one area of the disk.
However, wear leveling happens in the firmware and is thus
invisible to the NTFS file system. That is: it does not affect the
operation of NTFS, and the NTFS file system is not aware of this
taking place.

SSD devices also handle deletion differently than HDDs. Regular
HDDs handle deletion by marking the deleted blocks of the disc as
available. That is, regular HDDs leave the data on the disc until it is
overwritten. In contrast, an SSD drive cannot write to an already
occupied part. Thus, each block must be empty before it can be
written to. The earliest SSDs used a form of garbage collection to
empty deleted blocks. This matured into the creation of the TRIM
command, whichwipes the specified blocks. Once blocks have been
wiped, their data is physically removed from the disc and thus the
data no longer recoverable. This raises the question of whether
recovery of deleted files is possible at all on SSDs.

Nisbet et al. (2013) show that once the TRIM command has been
sent to the drive, erasing usually takes places within minutes. They
also show that, within the time frame of deleting a file by the user
2

and the execution of the TRIM command, significant amounts of
data can still be recovered, with small files being fully recovered,
and for large files being partially recovered. After the execution of
the TRIM command however, only up to 0.6% of the data was
recoverable. This places concrete boundaries on the forensic
effectiveness for file carving.

In case the data on the SSD was subjected to a successfully
executed TRIM command, the data thus is not realistically recov-
erable. However, there is not a one-to-one correspondence be-
tween file deletion and successful execution of a TRIM command. In
particular, there are various reasons why a SSD either is not TRIM-
enabled, or that a TRIM command is not succesfully executed.2
2.3. Fragmentation

The NTFS file system stores files into blocks, where each block
occupies a fixed size on disk. Blocks are identified by their block
number. A file is thus assigned a list of block numbers. A file is not
fragmented if the assigned block numbers are listed in order, and
these block numbers are consecutive. When this is not the case, the
file is fragmented. This may be because the blocks occur out of
order, because the block numbers are not consecutive, or both. This
gives rise to four storage patterns, as depicted in Fig. 1. Of these
storage patterns, in-order contiguously stored files are not frag-
mented. The other patterns describe fragmented files.

Two types of fragmentation can occur on a file system:

1. fragmentation of free space is caused due to the deletion and
shrinking of files. While these operations typically do not frag-
ment the file itself, they do create unallocated space that is likely
not adjacent to the (other) already existing unallocated space.

2. file fragmentation occurs when the file system does not write a
file contiguously. File fragmentation can happenwhen new files
are created or existing files are extended. Note that file system
implementations may choose to do so even when it is not
strictly necessary (i.e., when there is sufficient contiguous free
space available).

We refer to the various parts of a fragmented file as fragments.
More specifically, a file consists of a number of blocks, which are
grouped into one or more fragments. A fragment is contiguous and
in-order, and cannot be extended with more blocks of the same file
while remaining in-order and contiguous.
2.4. Degree of fragmentation

The degree of fragmentation can be defined in various ways,
depending on what is considered the total number of files. In
literature, it is not always clear which definition is used. It is the
ratio of the number of fragmented files divided by a total. Different
choices can be made for the total, which gives rise to four
definitions.

https://www.forensicfocus.com/articles/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions
https://www.forensicfocus.com/articles/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions


Table 1
Comparison of fragmentation rates found in literature.

source year % frag used frag. definition

Garfinkel (2007) Garfinkel 2007
e all file systems 6 ?
e NTFS file systems 12.2 ?

Meyer and Bolosky (2012) Meyer & Bolosky 2012 4 ?
van der Meer et al. (2019) Van der Meer et al. 2019 2.2 all MFT entries (I)

4.4 fragmentable files (IV)

V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
Definition 1. (degree of fragmentation). The degree of frag-
mentation is the number of fragmented files divided by the total
number of files. The total number of files defined as:

I. all MFT entries, OR
II. all MFT entries with data, OR
III. all MFT entries with blocks assigned, OR
IV. all MFT entries with � 2 blocks assigned.

Note that definition I covers all MFT entries, including symbolic
links; definition II excludes symbolic links; and definition III
furthermore excludes resident files. Nevertheless, definition IV still
includes files of one block e which inherently cannot fragment.
Definition IV is the only definition which excludes all non-
fragmentable MFT entries from consideration. It is thus the most
strict, while definition I is the most broad definition (gives the
smallest degree of fragmentation).

We consider definition IV most relevant for reporting on mea-
surements of file fragmentation. Definition III is useful when the
number of blocks of a file is unknown (e.g., in file carving). Most
studies unfortunately do not clarify which definition they use.
3 https://forensicswiki.xyz/wiki/index.php?title¼Category:Digital_Forensics_
XML.
3. Related work

There have been three large-scale studies reporting on file
fragmentation. We summarise their findings in Table 1.

The seminal large-scale study into file fragmentation is due to
Garfinkel (2007). He gathered data from over 300 used hard disks.
The data set includes 219 FAT file systems, 51 NTFS file systems and
5 UFS file systems. He found an average percentage of file frag-
mentation of 6%. Most findings are reported over the entire data set.
The paper does provide sufficient information to derive the frag-
mentation rate over all 51 NTFS file systems, namely 12.2%.

Garfinkel reports several findings. He found different file types
have different fragmentation rates, that most fragmented files are
split into two parts (bifragmented), and he reports on the gap size
between the two fragments of bifragmented files. It is not clear
which definition of degree of fragmentation Garfinkel uses in his
paper.

In a study on file system content of 597 Windows computers,
Meyer and Bolosky (2012) reported finding a level of file frag-
mentation of 4%. In addition, the most highly fragmented files
within their data set were log files. Note that it is not clear which
definition Meyer and Bolosky used to calculate the percentage of
fragmented files.

We previously (van der Meer et al., 2019) reported on the same
data set we analyse in this paper. There, we focus on how to
perform data acquisition in a privacy-friendly manner, providing
only scant data on fragmentation findings. We found that over 46%
of fragmented files were fragmented out-of-order. To the best of
our knowledge, this is the first report of out-of-order fragmentation
found in practice. Finally, we reported that in comparison to pre-
vious studies the percentage of fragmented MFT entries has
reduced, yet the absolute amount of fragmented data has increased.
3

While the previous works focused on desktops and laptops,
several studies have investigated file fragmentation on smart-
phones. Ji, Chang, Shi, Wu, Li and Xue (Ji et al., 2016) report on EXT4
fragmentation behaviour on four Android smartphones. They
observe that files, especially database files, may suffer from severe
fragmentation. In a follow-up study using five smartphones, Ji,
Chang, Hahn, Lee, Pan, Shi, Kim and Xue (Ji et al., 2019) find that,
under daily use, fragmentation quickly begins to occur. They find
that for such devices, fragmentation is strongly correlated with disk
space utilization. Moreover, the specific way how SQLite files are
used (frequent deletions, synchronous writes) exacerbates frag-
mentation as well.

Finally, Darnowski and Chojnacki (2018) derive a model of NTFS
block allocation algorithms that predicts how a new file will be
stored. They propose modelling the NTFS allocation strategy as a
finite state machine. They define a sequential model for writing
files, which provides predictions on block allocation. These pre-
dictions include predicting when fragmentation occurs and even
cover out-of-order fragmentation. They confirm the accuracy of
their model via synthetic experiments.

4. Data collection and processing

Data was collected from the personal machines of volunteer
student participants, between October 2018 and January 2019. The
machines were individually bought, managed, and maintained by
their respective owners. The student population is divided into
classes. By visiting each class once, we ensured no double partici-
pation. Data was collected by a custom-made privacy-friendly data
gathering tool based on Fiwalk, by Garfinkel (2009). The output of
this is standardised DFXML3 structured data. This was converted
into an SQLite database for analysis.

The data set consists of input from 220 laptops. Three of these
ran Windows 7, the other 217 ran Windows 10 (four of which in a
dual-boot configuration). With respect to storage devices configu-
rations: 111 laptops contained an SSD þ an HDD, 70 contained a
single SSD, 36 contained a single HDD, and 3 laptops contained a
dual SSD configuration. On six storage devices, one or more vol-
umes were encrypted and thus not accessible for data collection. In
total, these 334 storage devices contained 733 volumes: 729 NTFS,
and 4 EXT4. We exclude the EXT4 volumes from consideration.

Of the NTFS volumes, 707 volumes had a block size of 4096
bytes. Other NTFS block sizes were rare: 14 volumes had a block
size of 512 bytes; 7 had a block size of 1024 bytes and 1 volume had
a block size of 2048 bytes.

5. Results

In this section, we present our results. Note that many of the
distributions on which we report are skewed. To provide some

https://www.forensicswiki.xyz/wiki/index.php?title=Category:Digital_Forensics_XML
https://www.forensicswiki.xyz/wiki/index.php?title=Category:Digital_Forensics_XML
https://www.forensicswiki.xyz/wiki/index.php?title=Category:Digital_Forensics_XML


V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
insight into the skewedness, we present both average and median
values for such distributions.

The results will be presented using the different definitions on
fragmentation (primarily def. I and def. IV), where we use the most
relevant definition of the degree of fragmentation per context.
However, these metrics do not convey how complex the fragmen-
tation of a file is. Two aspects determine the complexity of a file's
fragmentation: the number of fragments (relative to the file size)
and the order between the fragments. To provide insight into the
complexity of fragmentation, we introduce two corresponding
metrics: the percentage of internal fragmentation to quantify the
number of fragments in relation to the file size, and the percentage
of out-of-order'ness (OoO'ness for short), which quantifies the
extent to which the fragments occur out of order. Both definitions
make use of the number of fragmentation points, which is the
number of times a process reading the file sequentially would need
to jump over one or more blocks to continue reading the file.

Definition 2. (% of internal fragmentation).
The percentage of internal fragmentation of a file f of at least 2

blocks is the ratio of the number of fragmentation points vs. the
number of blocks minus one, i.e.:

intfragðf Þ¼ fragpointsðf Þ
blocksðf Þ � 1

,100;

where blocksðf Þ denotes the total number of blocks of file f, and
fragpointsðf Þ is the number of times where, when reading a block of
file f, the next block of f is not the next block on disk. For example, a
file f1 whose blocks are stored contiguous and in order has 0 frag-
mentation points and therefore intfragðf1Þ ¼ 0%. Another example,
consider a file f2 of N blocks, where the blocks occur in order, but
every block of f2 is followed by a block of another file. In this case,
there is a fragmentation point after every block except the last block
of the file. Thus, fragpointsðf2Þ ¼ N� 1, which gives intfragðf2Þ ¼
N�1
N�1,100 ¼ 100%:

Definition 3. (% of OoO'ness).
The percentage of out-of-order'ness of a fragmented file f is the

ratio of the number of times the next fragment occurs prior to the
current vs. the total number of fragmentation points, i.e.:

OoOnessðf Þ¼ backfragpointsðf Þ
fragpointsðf Þ ,100;

with fragpointsðf Þ defined as before, and where backfragpointsðf Þ
denotes the number of times the next block of file f is stored earlier on
disk than the current block. For example, consider a file f3, of N
blocks, which is contiguous, but written backwards. I.e., the second
block is the block before the first block; the third block is the block
before the second, etc. In this case, every fragmentation point is
backwards, hence OoOnessðf3Þ ¼ 100%. In contrast, OoOnessðf2Þ ¼
0%, as file f2 was stored in-order, so backfragpointsðf2Þ ¼ 0.

Remark that extreme values of OoO'ness correspond to rela-
tively simple cases: an OoO'ness of 100% is a file where the next
block is always stored earlier on disk (e.g., f3), and an OoO'ness of 0%
concerns a file where the next block is always stored further (e.g.,
f1). In contrast, an OoO'ness of 50% means half the fragmentation
points are backwards e i.e., when reaching the end of a fragment,
there is no preference for either forward or backward direction to
find the next block. Thus, an average OoO'ness of 50% is a worst-
case (with respect to out-of-orderedness) situation for a file carver.
4

5.1. Fragmentation per MFT entry type

In Table 2, the main fragmentation characteristics of our data set
are presented, split per MFT entry type. For completeness and
comparison purposes, we include our previously (van der Meer
et al., 2019) reported totals (right column), extended with new
measures of average internal fragmentation and average OoO'ness.
Remark that both resident files and symbolic links can inherently
not fragment. In our data set, we find that hard-linked files are up to
7 times less likely to be fragmented than the average. Sparse files
and NTFS compressed files were already known to be prone to
fragmenting; to the best of our knowledge, we are the first to
quantify the extent of this. In the data set, we find that (under
definition I) around 10% of both sparse and NTFS compressed files
are fragmented. Under a stricter definition of fragmentation, one
that only considers files that may potentially fragment (i.e., files
with at least two blocks), the ratios increase to one in five (NTFS
compressed) and close to one in three (sparse), respectively. Finally,
note that when NTFS-compressed files are fragmented, the average
degree of internal fragmentation is lower than average (8.6% vs.
19.9%).

5.2. Fragmentation per file extension

Table 3 provides various data on the fragmentation per exten-
sion. In this table, we list the number of files with at least 2 blocks
(i.e., the number of files relevant for definition IV), as well as the
percentage of files that are fragmented. Specifically, we include
both def. I for comparison purposes, and def. IV as most represen-
tative definition of fragmentation. Furthermore, like Garfinkel
(2007), we provide the percentage of fragmented files that are
fragmented into 2, 3, and 4 or more parts completely in-order, and
similar for files that are fragmented at least partially out of order.
For the fragmented files, we also provide the average internal
fragmentation (definition 2), the average OoO'ness (definition 3), as
well as the average number of fragments.

5.2.1. Images
Fragmented images are often fragmented out of order. For

fragmented bmp, png, and raw files, the percentage of fragmented
files that are fragmented out-of-order are 44.1%, 38.0% and 37.6%,
respectively. For all other image formats, fragmented files are more
likely to be fragmented out-of-order than in-order.

5.2.2. Videos
Yang et al. (2017) claim avi files are more likely to be frag-

mented than other files. Our dataset does not corroborate this. We
find that the average fragmentation rate for avi files (1.8%) is lower
than the general average (4.4%). However, when avi files are
fragmented, the number of fragments is often large (average of 40.8
fragments).

The .mts format is a video format typically used in camcorders.
In our dataset, 2 systems account for 1555 of the 1591 mts files.

5.2.3. Office documents
Interestingly, Outlook pst files are often fragmented (35.8%).

The number of fragments is low, leading to a negligible rate of in-
ternal fragmentation. The main complexity in recovering frag-
mented pst files is due out-of-orderedness. Another interesting
document-related finding is that pdf files have a higher fragmen-
tation rate than the word-processing extensions rtf (Wordpad),
odt (OpenOffice), doc and docx (MS Word); an unexpected result
considering pdf files are typically static, i.e., not intended for
editing.



Table 2
Fragmentation per MFT entry type. For the right-most column, italicized text presents new additions in comparison to (van der Meer et al., 2019).

NTFS-compressed sparse files hardlinks resident files symbolic links MFT entries (van der Meer et al., 2019)

all 598,119 242,844 8,778,592 12,639,771 1,380,728 84,390,537
with data 597,255 97,322 8,659,294 12,616,364 e 82,960,039
with blocks 597,255 97,322 8,079,067 e e 70,320,268
with � 2 blocks 367,284 75,645 5,365,324 e e 42,671,054
fragmented files 72,351 24,079 34,720 e e 1,871,109
out-of-order frag. files 40,660 12,156 14,259 e e 868,917

% fragmented
of all 12.1% 9.9% 0.4% e e 2.2%
of those with data 12.1% 24.7% 0.4% e e 2.3%
of those with blocks 12.1% 24.7% 0.4% e e 2.7%
of those with � 2 blocks 19.7% 31.8% 0.6% e e 4.4%

of fragmented files:
out-of-order fragmented 56.2% 50.5% 41.1% e e 46.4%
avg. internal fragmentation 8.6% 12.8% 24.3% e e 19.9%
avg. OoO'ness 32.5% 29.2% 24.1% e e 29.9%

Table 3
Fragmentation per extension (categorised).

ext # files with �2 blocks % fragmented % of fragmented files with … fragments: of fragmented files:

in-order out of order avg. % avg. % avg. #

def. I def. IV 2 3 �4 2 3 �4 intfrag OoO'ness fragments

Image
bmp 70,425 1.6 2.5 40.7 9.7 5.4 14.6 10.7 18.8 10.3 29.2 3.2
gif 276,241 0.8 1.8 40.4 7.9 5.3 10.3 9.0 27.0 28.4 26.4 3.6
jpeg 13,774 8.5 8.7 24.8 8.8 6.0 10.6 9.1 40.7 13.6 33.6 3.8
jpg 1,043,198 2.7 3.1 32.6 6.2 3.8 13.8 10.5 33.1 12.4 33.5 4.4
png 2,389,752 0.9 3.1 48.9 9.5 3.5 14.4 10.2 13.4 32.9 25.6 2.8
psd 7022 4.5 4.5 31.0 7.8 1.6 16.6 17.2 25.7 6.8 37.2 9.3
psp 422 4.6 6.2 15.4 15.4 11.5 3.8 7.7 46.2 5.7 24.8 8.7
raw 5246 1.1 1.2 57.8 4.7 0.0 12.5 18.8 6.3 3.5 24.9 17.1
tif 6309 9.3 9.7 13.3 18.7 5.7 3.6 19.7 39.0 4.8 31.3 4.1

Video
avi 9800 1.8 1.8 9.6 1.7 2.8 0.0 1.1 84.7 1.1 29.9 40.8
flv 332 26.8 26.8 6.7 3.4 1.1 1.1 4.5 83.1 1.5 38.5 29.8
mkv 2404 2.7 3.1 44.0 2.7 0.0 12.0 8.0 33.3 0.1 32.4 6.8
mov 4459 4.3 4.4 30.9 0.5 0.5 13.9 13.9 40.2 0.5 39.0 20.2
mp4 38,007 6.4 6.5 31.3 5.7 2.5 14.4 11.2 35.0 1.0 36.7 28.8
mpg 3269 0.4 0.4 0.0 15.4 0.0 7.7 0.0 76.9 1.9 42.0 21.8
mts 1591 0.2 0.2 33.3 0.0 0.0 0.0 33.3 33.3 0.0 52.4 4.3
wmv 27,328 0.7 0.7 33.2 3.6 0.0 35.7 10.7 16.8 1.8 50.1 5.8

Office
doc 14,831 5.1 5.5 21.4 9.7 9.7 8.5 13.4 37.3 15.8 31.4 5.1
docx 87,077 6.0 6.2 35.1 8.6 5.6 13.5 9.7 27.4 16.5 30.2 4.6
msg 7120 0.7 6.2 75.7 0 0 0.0 23.6 0.0 0.7 38.2 24.1 2.1
odt 2147 4.8 4.9 44.8 6.7 5.7 23.8 7.6 11.4 35.9 33.7 2.8
pdf 92,117 7.9 8.1 14.6 6.1 9.7 6.7 8.9 53.9 7.3 33.6 9.3
ppt 3406 7.9 8.0 7.0 0.0 3.3 5.1 1.5 83.1 3.0 37.4 10.9
pptx 17,846 11.6 11.7 8.7 2.5 6.3 5.5 4.2 72.8 3.4 36.3 19.2
prf 1113 0.9 4.6 66.7 0.0 0.0 23.5 0.0 9.8 31.6 26.8 2.4
pst 120 33.1 35.8 55.8 2.3 0.0 9.3 23.3 9.3 0.0 24.7 2.8
rtf 80,977 0.9 1.0 39.4 3.5 6.1 29.9 9.7 11.4 6.7 40.7 3.5
xls 8550 2.0 2.3 22.2 5.7 8.2 5.2 13.9 44.8 13.9 33.8 5.2
xlsx 17,721 4.1 4.1 48.6 12.3 3.8 16.6 8.6 10.1 27.3 30.4 3.3

Database
accdb 1450 12.0 12.0 8.6 3.4 2.9 2.9 13.8 68.4 4.7 40.6 30.0
db 33,320 12.0 17.4 28.2 7.8 3.5 8.8 9.2 42.5 19.5 32.2 24.5
mdb 11,052 3.8 6.1 21.1 7.9 4.0 14.0 13.5 39.5 9.8 39.2 5.1
sqlite 7959 26.2 27.8 44.3 5.6 2.2 20.5 7.1 20.4 9.0 33.2 6.9

Archive
7z 3568 12.2 18.1 58.5 7.7 1.9 6.7 9.9 15.3 49.7 19.0 31.8
gz 48,900 1.8 3.7 33.4 21.0 6.2 5.9 12.5 20.9 56.2 20.5 6.4
rar 3589 7.3 7.5 13.7 4.8 2.6 5.2 7.4 66.3 3.5 34.5 48.1
zip 53,919 7.9 11.2 22.9 7.6 7.9 8.5 7.7 45.5 15.9 30.4 22.4

V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125

5



Table 4
Fragmented files per file size.

File sizeb # fragmented files % frag

minae 10 kB 11,531,201 1.8
10e50 kB 15,669,438 3.9
50e100 kB 4,468,221 4.9
100e500 kB 6,490,196 7.4
0.5e1MB 1,573,008 6.8
1e5MB 2,096,812 8.2
5e10MB 397,872 7.8
10e50MB 341,782 9.5
50e100MB 45,148 14.0
100e500MB 44,534 21.4
> 500MB 12,842 46.1

a Min: 2 assigned blocks, irrespective of file size and block size.
b kB¼ 1000 bytes, MB¼ 1,000,000 bytes.

Table 5
Fragmentation characteristics of fragmented files versus file size.

File sizeb % OoO % intfrag % OoO'ness # fragments
avg median

minae 10 kB 18.7 77.0 18.2 2.0 2
10e50 kB 29.7 26.0 24.9 2.3 2
50e100 kB 47.1 10.7 32.2 2.8 2
100e500 kB 57.5 5.5 34.3 3.6 3
0.5e1MB 70.2 2.9 37.3 5.5 4
1e5MB 76.2 2.2 38.1 10.0 5
5e10MB 80.4 1.5 37.4 23.1 7
10e50MB 82.6 1.3 37.2 49.2 12
50e100MB 76.7 1.3 33.7 126.3 14
100e500MB 66.2 0.6 35.9 156.8 3
> 500MB 74.1 0.1 36.3 93.1 4

a Min: 2 assigned blocks, irrespective of file size and block size.
b kB¼ 1000 bytes, MB¼ 1,000,000 bytes.

V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
5.2.4. Databases
Ji et al. (2019) studied fragmentation on Android systems and

found that database files are prone to fragmentation, due to con-
current and frequent growth. Our dataset shows that this is true on
NTFS systems as well: all database extensions are fragmented
above average.
5.3. Fragmentation in relation to file size

Tables 4 and 5 show fragmentation and fragment properties
split out in file size intervals. The ranges include start point, and
exclude the end point. With regards to the smallest file that may be
fragmented: this is dependent on the number of allocated blocks.
Note that allocated blocks do not need to be filled. Indeed, we found
10 fragmented files, whose file size was 1 byte.

Table 4 shows that smaller files occur more often than larger
files. Note that 74% of all files of at least two blocks are smaller than
100 kB. Furthermore, we make the following observations:
Table 6
Distribution of number of fragments per file.

#fragments #files % OoO average OoO'ness

2 1,062,539 26.3 26.3%
3 340,422 56.5 32.8%
4 160,472 74.9 34.9%
5 93,835 84.6 35.5%
6e10 122,388 91.5 36.7%
11e20 45,031 93.5 36.8%
21e100 35,890 92.4 36.8%
101e1000 9721 93.6 34.6%
1001þ 811 96.4 30.3%

6

� Of all fragmented files with a file size between 1 and 100MB,
over 75% is fragmented out-of-order.

� As file size increases, the number of fragments typically in-
creases (though this correlation is not perfect).

� For files >50 kB, the average OoO'ness is slightly over a third,
more or less irrespective of the file size. This means that at
each fragment boundary, there is, on average, a probability of
about 1

3 that the next fragment is located before the current

fragment, and a probability of about 2
3 of the next fragment

being ahead.
� We found that some files are extremely fragmented, such as one
file split into 20,000 fragments. This skews the average, but the
median value of the range is less affected and provides a more
nuanced view on the number of fragments.
5.4. Distribution of the number of fragments

In Table 6, we extend our previously reported fragmentation
data [10, pg.5, Table II] with file size and gap size information.

As we reported previously, 56.76% of files is bi-fragmented
(fragmented into two parts). In-order bi-fragmented files are
common amongst fragmented files, they constitute 41.84% of all
fragmented files. Theoretically, as files are fragmented into more
parts, it is increasingly less likely that all fragments occur in order.
Our data set corroborates this.

Finally, note that the average OoO'ness is hardly correlated
with the number of fragments. For any file fragmented into three
or more fragments, average OoO'ness is yet again roughly a
third.

5.5. Gapsize distribution of bi-fragmented files

For in-order fragmented files, the gap between two consecutive
fragments is unambiguously defined as the distance from the last
block (“tail”) of the first, to the first block (“head”) of the second. For
out-of-order files, there is not one, unique, unambiguous definition
of the distance between two consecutive fragments. Note that since
Garfinkel's study does not consider out-of-order fragmented files, a
direct comparison is not possible.

Fig. 2 depicts three possible metrics. All three metrics have their
applications. The first, tail-head distance, covers the total length to
be covered, but includes the length of both fragments themselves.
For file carving, this is not that useful: once the first fragment is
found, this will be skipped when searching for further fragments.
The second metric, shortest gap distance, measures the shortest
distance between the two fragments, which only makes sense if
both fragments are known. The third metric, carving distance,
measures the distance an out-of-order file carver would have to
make. This includes the fragment length of the unknown fragment,
but skips the already-found fragment.
Sum of all gap sizes (in blocks) (carving-distance)

min average median max

1 7,038,401 711,673 517,861,056
2 15,594,100 5,406,252 990,207,960
3 25,645,754 11,833,174 811,066,168
4 34,104,018 16,748,220 969,975,568
5 53,979,693 28,003,492 2,002,994,256
11 90,567,873 47,230,761 3,037,661,708
42 227,973,821 96,196,576 9,852,412,280
399 1,194,774,735 345,806,721 69,129,433,312
17,636 5,760,340,498 948,806,352 270,488,355,485



Table 7
Fragmentation per storage device.

Storage Device # average median

frag frag

Single disk (SSD) 67 5.6% 2.0%
Single disk (HDD) 36 2.3% 1.2%
Primary disk (SSD) 113 7.3% 4.7%
Secondary disk (HDD) 110 1.4% 0.2%
Secondary disk (SSD) 3 4.1% 3.9%

Fig. 2. Possible metrics for gapsize of OoO fragmented files.

Fig. 4. Gap-size distribution of out-of-order 2-fragmented files.

V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
Note that when looking at in-order fragmented files, these three
metrics are equivalent. It is only when the next fragment appears
before the current fragment that differences arise.

Fig. 3 depicts the number of in-order bi-fragmented files with a
distance of 1e300 blocks. The part shown in the figure covers 10.0%
of all distances between the fragments of in-order bi-fragmented
files. The large trends depicted in the figure hold over the entire
range; in particular, we found that distances in general decline,
with a generic exception for gapsize distances that are a power of
two (see also Table B11 in the appendix).

We evaluated all three distances for out-of-order bi-fragmented
files. We found that there are only small deviations between them.
Interestingly, the peaks at distances of powers of two as seen for in-
order files occurred much more strongly for carving distance than
for the other two distance metrics. Hence, from here on out wewill
use this metric for the gapsize of out-of-order files.

Fig. 4 depicts the carving distances for out-of-order files. As was
the case for in-order files, the main trends depicted in the figure
continue across the entire range. The gapsizes depicted in the figure
cover 5.0% of all out-of-order bi-fragmented files.

Lastly, concerning the aforementioned preference for gap
lengths of powers of two: note that these gap lengths are not
necessarily aligned with specific locations on disk. More specif-
ically, the length of the first fragment determines the gap start. This
preference for gap lengths of powers of two thus seems to be an
artefact of how NTFS assigns blocks. Consequently, the fact that
Fig. 3. Gap-size distribution of in-order 2-fragmented files.

7

carving distance aligns well with these observations suggests that
carving distance aligns with how NTFS allocates blocks.

5.6. Percentage of used volume space and file fragmentation

As a volume becomes more filled with data, the remaining un-
allocated space becomes progressively more scarce and more likely
to be fragmented. This may impact for the degree of fragmentation.
For example, Ji et al. (2019) concluded from their study of Android
devices that the degree of fragmentation is highly correlated with
the percentage of used volume space.

We examined this in our data set. First of all, we excluded vol-
umes with very few files (� 15), as we do not consider such vol-
umes to be in active daily use (but act e.g., as recovery partition).
Moreover, they contain so few files, that even a single fragmenta-
tion on such a volume will strongly skew the fragmentation rate,
and thus, strongly affect the correlation. For example, in our data
set there are 44 volumes that each contain 3 files, one of which is
fragmented (i.e., a fragmentation percentage of 33%).

Given these constraints, we find a moderate positive relation
between data fragmentation and the percentage of used volume
space. For SDDs we find that the correlation is 0.462, and for HDDs
the correlation is 0.464. Though the correlation coefficients are
nearly identical, the underlying data distribution is rather different,
as shown in Fig. 5.

5.7. Fragmentation per storage device

For non-dual-boot systems, we distinguished between primary
(boot disk) and secondary storage devices within our data set based
on file count and extension occurrence. This is possible as a Win-
dows install has roughly 80,000 files, with many system-related
extensions such as .dll and .com. For every non-dual-boot sys-
tem in our data set, these heuristics provided a clear division be-
tween primary and secondary storage device.

By default, Windows has a scheduled defragment-task, with
different schedules for SSDs (monthly) and HDDs (weekly). The
defragmentation strategy can differ per storage device.4

Table 7 shows that single disk SSD-systems are more frag-
mented than single disk HDD-systems, on average 2.4 times more.
The most common system configuration is a SSD/HDD combina-
tion. In this configuration, the primary SSDs are way more
4 https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/defrag.

https://www.docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://www.docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag


Fig. 5. Fragmentation vs. used volume space.

Table 9
Comparison of fragmentation rates between 2007 and this paper.

file type # files reported % fragmented

2007, (Garfinkel, 2007) 2020, def. IV 2007 2020

Image
bmp 26,018 70,425 8 2.5
gif 357,713 276,241 8 1.8

V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
fragmented than secondary HDDs, on average 5.2 times more. Note
that in this data set there was no system with a dual HDD
configuration.

5.8. Other extremes and curiosa

� In our data set, there are 2914 file extensions for which no file
happened to be fragmented. The top 10 most occurring of these
is listed in Table 8.

� Among the extremely fragmented files (files with thousands
fragments or more), the most frequent occurring extensions are
exe, log, xml, dat, and dll.

� Of all the 1,871,109 fragmented files, only 8 are fragmented
contiguous out-of-order. All these 8 files are bi-fragmented.

� Some files occupy vastly more blocks than their file size re-
quires. One file in our corpus had a 1 byte file size, yet had 369
blocks allocated on disk. Moreover, this 1 byte file was frag-
mented (out-of-order) into 5 fragments.

6. Discussion

6.1. Overall fragmentation rates

The overall fragmentation rates (Sec. 5.1) have implications for
file carvers. First, an upside for file recovery tooling: most files are
not fragmented. This means that file recovery tools which ignore
Table 8
Top 10 most frequently occurring extensions without fragmented files.

Ext # files (def. IV) # systems File size in bytes

Avg. Median St. Dev.

ctt 51,315 28 7596 4904 5545
ovl 47,998 14 313,040 33,599 3,716,227
p7x 36,030 99 10,693 10,653 733
tt 24,032 47 27,017 26,786 3466
anm 23,807 12 42,248 22,522 125,422
vcd 21,288 8 1959 1547 4509
prx 20,885 197 11,889 4286 241,195
slp 20,461 7 926,198 63,459 3,236,241
p7s 17,252 42 9834 9355 2036
ovs 16,310 8 3,735,952 51,213 8,313,296

8

fragmentation (which are far easier to construct) will recover most
files. Indeed, various studies assume that files are not fragmented,
such as Gladyshev and James (2017), Sportiello and Zanero (2012).

However, there is also a downside: out-of-order files constitute
close to half of all fragmented files. This means that any tool that
aims to recover fragmented files, must account for out-of-order
fragmentation. This impacts existing studies. For example, neither
the file carver due to Garfinkel (2007) nor the file carver for frag-
mented jpg files due to Abdullah et al. (2013) account for out-of-
order fragmentation.

6.2. Fragmentation per extension

The general trend of less fragmentation compared to previous
studies extends also to specific files. In Table 9, we compare our
findings to those reported in the 2007 study by Garfinkel. Note that
jpeg and jpg file formats are equivalent, but they use a different
extension. The same holds true for the mpeg and mpg file format. In
Table 9, we compare Garfinkel's findings against our ratio as
determined by def. IV (fragmentable files). We find a lower frag-
mentation rate across all extensions.

6.3. Implications for file carving

Although file fragmentation is a topic that attracts some interest
in the digital forensics research community, most popular file
carvers used in practice focus almost exclusively on recovering
unfragmented files. This is an understandable choice given the
considerable time it takes to carve large disks and other media even
in the simplest scenarios.

This paper makes it possible for developers and users of file
carvers to make informed choices about the type of recovery they
implement and use. It allows an assessment of the added benefits of
actually using bifragment gap carving and whether to extend such
an algorithm to include out-of-order fragments or extend it to
something else, such as reconstructing files containing multiple
gaps.

An important contribution is the explicit measurement of the
incidence of out-of-order fragmented files (Tables 2, 3, 5 and 6),
especially given that this is a large (percentage-wise) subset of all
fragmented files. Additionally, the reporting on encountered actual
jpeg 108,539 13,775 16 8.7
jpg e 1,043,198 e 3.1
png 9995 2,389,752 5 3.1

Office
doc 7673 14,831 17 5.5
ppt 1120 3406 8 8.0
pst 70 120 58 35.8
xls 2159 8550 11 2.3

Video
avi 998 9800 20 1.8
mpeg 168 9 17 11.1
mpg e 3269 e 0.4

Database
mdb 402 11,052 27 6.1



V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
gap sizes (Sec. 5.5) allows for practical estimations of the perfor-
mance impact on deploying such an extended file carver. Given the
amount of data fragmented out of order, as reported in this paper,
the impact of a file carver able to reconstruct such files can now be
properly ascertained.

6.4. Carving of NTFS-compressed and sparse files

NTFS allows special storage modes that do not store the actual
file contents as-is on disk: NTFS-compression and sparse files. For
both types, the blocks as stored on disk are not sufficient to
reconstitute a file. Note that either mode may be used irrespective
of a file's contents or file type. Thus, these NTFS storage modes
could pose a challenge for file carvers.

Yoo, Park, Lim, Bang and Lee (Yoo et al., 2012) state that most file
carvers are unable to handle NTFS-compressed data (irrespective of
fragmentation). They consider files of at least one block. In our
dataset, only 0.8% of all files with allocated blocks (597,255/70, 320,
268) is NTFS-compressed. Yoo et al. propose a file carver to recover
NTFS-compressed files. Their carver does not account for frag-
mented NTFS-compressed files, which (in our dataset) constitutes
12.1% of all NTFS-compressed files with blocks. Interestingly, their
carver is targeted at NTFS-compressed avi, wav and mp3 files. In
our data set, the percentage of these files that are NTFS-compressed
is 0.1%, 0.0% and 0.1%, respectively (Table A10).

With respect to sparse files, we find only three extensions (of
those investigated) have a significant portion of them as sparse:
pst (12.8%), sqlite (9.6%), and db (7.7%). All of these are signifi-
cantly more fragmented than the average: 35.8%, 27.8% and 17.4%,
respectively. The percentage of sparse files for the other studied
extensions remains below 0.5%.

7. Conclusions

We performed a contemporary study into file fragmentation.
Our data set is comprised of disk information from 220 personally
acquired, owned, andmanagedmachines. The datawas collected in
a period of 4 months (Oct’18 e Jan’19).

Previous reports lacked a clear definition on which files were
considered. We remedied this by distinguishing four possible def-
initions of fragmentation rates, from including all MFT entries to
Table A.10
Meta information per extension (categorised)

ext #"># systems file size in bytes using def. IV:

def. III def. IV avg. median st. dev.

Images
bmp 214 213 380,653 36,176 4,603,97
gif 214 214 73,113 14,878 587,069
jpeg 181 177 430,900 132,696 921,712
jpg 215 215 469,789 43,499 1,383,94
png 215 215 77,909 13,385 819,778
psd 156 156 6,098,161 318,875 25,696,7
psp 68 67 2,913,965 164,864 13,461,2
raw 207 200 4,943,742 38,144 22,211,2
tif 188 178 2,174,293 178,288 9,322,60

Videos
avi 199 199 20,822,230 730,952 105,051,
flv 34 34 25,612,283 3,670,220 83,269,8
mkv 206 206 250,121,103 109,239,726 351,135,
mov 95 95 51,779,439 15,788,157 119,573,
mp4 214 214 55,803,648 2,005,846 211,305,
mpg 92 92 2,802,244 569,095 33,224,6
mts 8 7 168,426,360 113,362,944 191,510,
wmv 206 206 4,187,920 398,973 47,347,3

9

only including MFT entries that could possibly fragment. We
focused our reporting on the latter definition: files that could
possibly fragment. We found an average fragmentation rate of 4.4%,
which presents a significant decrease compared to Garfinkel's 2007
study. This decrease is also evident on the level of individual file
types.

We reported on a number of fragmentation characteristics,
including the convolutedness of fragmented files and the gapsize.
To assess the convolutedness of fragmented files, we proposed two
novel metrics: degree of internal fragmentation and degree of out-of-
orderedness. Fragments are separated by a gap. We noted that there
are three possible definitions of gapsize in case the next fragment
precedes the current. Although the differences between these
definitions are not very large, the carving distance still stood out: of
the three, its measurements most strongly showed the “powers-of-
two” gapsize property that forward-measured gapsizes so strongly
exhibit.

7.1. Future work

We intend to design and implement a modern file carver sup-
porting in- and out-of-order fragmentation. Furthermore, carving
of fragmented NTFS-compressed files and carving of sparse files is
currently unexplored territory. We found that sparse files mostly
concern system-related file extensions. We are not aware of any file
carver tailored for recovering sparse files, and we are exploring
ways to implement such a file carver.

Acknowledgements

The authors would like to thank Guy Dols for his technical
support, and all the volunteers (device owners) for their collabo-
ration in this research. Van der Meer was supported by the
Netherlands Organisation for Scientific Research (NWO) through
Doctoral Grant for Teachers number 023.012.047.

Appendix A. Auxiliary data per extension
using def. III:

max. # files % NTFS- compressed % sparse

5 1,150,221,432 105,371 0.1 0.0
67,859,584 468,406 0.4 0.0
19,905,785 14,137 5.1 0.1

1 202,187,275 1,157,750 1.7 0.1
443,815,127 6,551,794 0.6 0.0

86 657,852,455 7111 1.1 0.0
47 79,354,648 444 5.0 0.0
17 340,245,502 6038 0.0 0.0
8 536,980,180 6512 0.8 0.0

447 1,886,142,464 9805 0.1 0.4
28 911,348,494 332 0.0 0.0
887 1,994,939,880 2406 0.1 0.2
812 1,925,087,760 4478 1.6 0.0
187 1,998,753,571 38,155 2.4 0.1
06 1,644,236,800 3269 0.0 0.0
208 1,893,931,008 1747 0.0 0.0
82 1,892,176,290 27,382 0.0 0.0

(continued on next page)



Table A.10 (continued )

ext #"># systems file size in bytes using def. IV: using def. III:

def. III def. IV avg. median st. dev. max. # files % NTFS- compressed % sparse

Office
doc 214 214 480,189 43,520 9,447,633 1,000,000,000 15,666 0.7 0.0
docx 214 214 371,838 29,359 2,032,033 117,328,214 87,124 2.8 0.0
msg 213 213 28,180 4823 111,153 4,486,144 36,296 0.7 0.0
odt 140 140 152,304 16,500 818,144 24,663,942 2147 1.1 0.0
pdf 215 215 2,619,014 462,167 12,769,129 695,725,963 93,265 1.1 0.0
ppt 210 210 1,462,596 802,816 2,396,460 35,269,926 3406 0.6 0.0
pptx 211 211 4,711,035 1,089,065 16,722,112 871,334,541 17,851 1.3 0.1
prf 119 118 15,741 8405 101,644 3,145,728 3156 0.2 0.0
pst 31 27 152,551,442 173,720,576 213,757,822 1,896,784,896 125 2.4 12.8
rtf 214 214 183,797 82,239 1,051,434 77,456,537 90,604 0.3 0.1
xls 207 207 252,638 67,072 642,497 15,325,184 9891 0.1 0.0
xlsx 214 214 205,915 17,573 4,159,236 307,409,090 17,729 1.1 0.0

Databases
accdb 190 190 2,029,463 724,992 6,719,223 145,084,416 1450 2.1 0.0
db 215 215 4,075,278 74,752 54,485,792 1,988,837,638 41,762 1.5 7.7
mdb 175 175 233,414 31,773 764,419 18,874,368 14,762 5.6 0.2
sqlite 212 212 782,992 65,536 7,712,433 454,340,608 8245 1.8 9.6

Archives
7z 201 201 37,437,492 112,778 143,243,604 1,926,983,279 5170 0.7 0.0
gz 213 213 243,467 10,277 7,615,496 816,336,896 84,665 1.7 0.0
rar 161 161 49,886,452 5,883,486 156,451,000 1,927,419,308 3667 0.4 0.1
zip 217 217 18,503,962 168,076 102,922,058 1,988,366,193 67,884 0.3 0.0

V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
In Table A10, we provide auxiliary data on file sizes. The right-
hand side of this table focuses on NTFS-compressed and sparse
files. Recovery of such files is complex, irrespective of whether they
are fragmented or not. Therefore, results concerning these file types
in Table A.10 are reported on all files with blocks (def. III), and not
only files that could fragment (def. IV).
Appendix B. Gap sizes of powers of two
Table B.11
In-order bi-fragmented gap sizes around powers of 2.

Gap #"># Files Gap #"># Files Gap #"># Files Gap #"># Files Gap #"># Files Gap #"># Files

20 3793

21 2507 … … … … … … … … … …

3 1819 15 1016 63 212 255 77 1023 28 4095 10
22 2408 24 1587 26 1346 28 300 210 78 212 20
5 1603 17 498 65 210 257 57 1025 23 4097 4
… … … … … … … … … … … …

7 1165 31 469 127 121 511 39 2047 23 8191 3
23 2431 25 1083 27 421 29 138 211 43 213 7
9 972 33 302 129 106 513 46 2049 11 8193 2
Table B11, shows the frequency of gap sizes (in blocks) of powers
of 2 for bi-fragmented files in our dataset. For comparison, we also
show the incidence for adjacent gapsizes.
References

Abdullah, N.A., Ibrahim, R., Mohamad, K.M., Hamid, N.A., 2013. Carving linearly JPEG
images using unique hex patterns (UHP). In: Proc. 1st Conference on Advanced
Data and Information Engineering (DaEng’13). Springer, pp. 291e300.

Bahjat, A.A., Jones, J., 2019. Deleted file fragment dating by analysis of allocated
neighbors. Digit. Invest. 28, S60eS67.

Darnowski, F., Chojnacki, A., 2018. Writing and deleting files on hard drives with
NTFS. Comput. Sci. Math. Model. 8, 5e15.

Durmus, E., Korus, P., Memon, N.D., 2019. Every shred helps: assembling evidence
from orphaned JPEG fragments. IEEE Trans. Inf. Forensics Secur. 14, 2372e2386.
10
Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object
validation. Digit. Invest. 4, 2e12.

Garfinkel, S.L., 2009. Automating disk forensic processing with sleuthkit, XML and
python. In: Proc. 4th IEEE Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE’09), pp. 73e84.

Gladyshev, P., James, J.I., 2017. Decision-theoretic file carving. Digit. Invest. 22,
46e61.

Ji, C., Chang, L., Shi, L., Wu, C., Li, Q., Xue, C.J., 2016. An empirical study of file-system
fragmentation in mobile storage systems. In: Proc. 8th USENIX Workshop on
Hot Topics in Storage and File Systems (Hot Storage’16), pp. 1e5.

Ji, C., Chang, L.P., Hahn, S.S., Lee, S., Pan, R., Shi, L., Kim, J., Xue, C.J., 2019. File
fragmentation in mobile devices: measurement, evaluation, and treatment.
IEEE Trans. Mobile Comput. 9, 2062e2076.

van der Meer, V., Jonker, H., Dols, G., van Beek, H., van den Bos, J., van Eekelen, M.,
2019. File fragmentation in the wild: a privacy-friendly approach. In: Proc. 11th
IEEE Workshop on Information Forensics and Security (WIFS’19). IEEE, pp. 1e6.

Meyer, D.T., Bolosky, W.J., 2012. A study of practical deduplication. Trans. Storage 7,

http://refhub.elsevier.com/S2666-2817(21)00023-8/sref1
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref1
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref1
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref1
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref2
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref2
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref2
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref3
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref3
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref3
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref4
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref4
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref4
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref5
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref5
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref5
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref6
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref6
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref6
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref6
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref7
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref7
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref7
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref8
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref8
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref8
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref8
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref9
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref9
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref9
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref9
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref10
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref10
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref10
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref10
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref11


V. van der Meer, H. Jonker and J. van den Bos Forensic Science International: Digital Investigation 38 (2021) 301125
14:1e14:20.
Nisbet, A., Lawrence, S., Ruff, M., 2013. A forensic analysis and comparison of solid

state drive data retention with trim enabled file systems. In: Proc. 11th
Australian Digital Forensics Conference (ADFC’13). SRI Security Research Insti-
tute, pp. 1e10.

Rahmat, R., Nicholas, F., Purnamawati, S., Sitompul, O., 2017. File type identification
of file fragments using longest common subsequence (lcs). In: International
Conference on Computing and Applied Informatics (2016). IOP Publishing,
pp. 1e9.
11
Sportiello, L., Zanero, S., 2012. Context-based file block classification. In: Proc. 8th
IFIP WG 11.9 International Conference on Digital Forensics. Springer, pp. 67e82.

Yang, Y., Xu, Z., Liu, L., Sun, G., 2017. A security carving approach for AVI video based
on frame size and index. Multimed. Tool. Appl. 76, 3293e3312.

Ying, H., Thing, V.L.L., 2010. A novel inequality-based fragmented file carving
technique. In: Proc. 3rd International Conference on Forensics in Telecommu-
nications (ICST’10). Springer, pp. 28e39.

Yoo, B., Park, J., Lim, S., Bang, J., Lee, S., 2012. A study on multimedia file carving
method. Multimed. Tools Appl. - MTA 61, 1e19.

http://refhub.elsevier.com/S2666-2817(21)00023-8/sref11
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref11
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref12
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref12
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref12
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref12
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref12
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref13
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref13
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref13
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref13
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref13
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref14
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref14
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref14
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref15
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref15
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref15
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref16
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref16
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref16
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref16
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref17
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref17
http://refhub.elsevier.com/S2666-2817(21)00023-8/sref17

	A contemporary investigation of NTFS file fragmentation
	1. Introduction
	1.1. Contributions

	2. Background
	2.1. Terminology
	2.2. Data storage and deletion on SSDs
	2.3. Fragmentation
	2.4. Degree of fragmentation

	3. Related work
	4. Data collection and processing
	5. Results
	5.1. Fragmentation per MFT entry type
	5.2. Fragmentation per file extension
	5.2.1. Images
	5.2.2. Videos
	5.2.3. Office documents
	5.2.4. Databases

	5.3. Fragmentation in relation to file size
	5.4. Distribution of the number of fragments
	5.5. Gapsize distribution of bi-fragmented files
	5.6. Percentage of used volume space and file fragmentation
	5.7. Fragmentation per storage device
	5.8. Other extremes and curiosa

	6. Discussion
	6.1. Overall fragmentation rates
	6.2. Fragmentation per extension
	6.3. Implications for file carving
	6.4. Carving of NTFS-compressed and sparse files

	7. Conclusions
	7.1. Future work

	Acknowledgements
	Appendix A. Auxiliary data per extension
	Appendix B. Gap sizes of powers of two
	References


